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ABSTRACT 

The concept of  i n s u l a t i n g  a cryogenic f l u i d  by t h e  vaporizat ion of  a 
secondary cryogenic r e f r i g e r a n t  i s  not  new. 
f o r  s e v e r a l  years  i n  ground equipment and labora tory  type l i q u i d  helium 
dewars e 

t h i s  technique t o  f l i g h t - t y p e  equipment. 
environmental con t ro l  systems, and propel lan t  p re s su r i za t ion  systems t o  be 
u t i l i z e d  aboard f u t u r e  spacecraf t  w i l l  a11 requ i r e  improved s ta te -of - the-  
a r t  adQances i n  t h e  handl ing and s torage  of  cryogenic f l u i d s .  The concept 
of shroud cool ing o f  a cryogenic s to rage  system i s  discussed i n  t h i s  r epor t  
t o  determine t h e  p o t e n t i a l  weight savings and improved thermal performance 
f o r  c e r t a i n  appl ica t ions .  
s h i e l d  f o r  more e f f e c t i v e  i n s u l a t i o n  is discussed. 
System fab r i ca t ed  and t e s t e d  i n  t h i s  program is descr ibed.  
o f  t h i s  cryogenic s to rage  system f o r  s p e c i f i c  f l i g h t  app l i ca t ions  has been 
success fu l ly  demonstrated by t h i s  program. 

This technique has been used 

However, l i t t l e  e f f o r t  has previously been expended i n  applying 
Fuel ce l l  r e a c t a n t s  supply systems, 

I n  add i t ion ,  vapor cool ing of a d i s c r e t e  r a d i a t i o n  
The Cryogenic Shroud 

The f e a s i b i l i t y  
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LIST OF SYMBOLS 

h = Spec i f i c  enthalpy of f l u i d  a t  given thermodynamic condi t ion 

m = Mass flow rate Lb/Hr 

Q = Rate o f  hea t  t r a n s f e r  i n t o  system 
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T:, = Absolute temperature of enclosing sur face  i n  a d i s c r e t e  
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u = Stefan  - Boltzmann constant  Btu/Hr Sq/FtoR4 

E = Emissivi ty  f a c t o r  between sur faces  i n  a d i s c r e t e  sh ie lded  
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I INTRODUCTION 

Since an t i c ipa t ed  fu tu re  space f l i g h t s  are t o  be of long dura t ions ,  
t h i s  w i l l .  n eces sa r i ly  create g r e a t e r  demands on t h e  environmental system 
suppl ies .  
preserve these  suppl ies  during standby condi t ions.  
Corporation has designed and f ab r i ca t ed  a cryogenic s torage  system which 
employs t h e  use of a shroud u n i t  t o  f u l f i l l  t h i s  funct ion.  

I t  is the re fo re  a prime r e q u i s i t e  t h a t  a method be developed t o  
As a r e s u l t ,  t h e  Bendfx 

This shroud concept provides a means of  using a secondary f l u i d  t o  
act as a r e f r i g e r a n t  and thus g r e a t l y  reduce loss of  t h e  primary f l u i d  
contained i n  t h e  inne r  ves se l ,  
during t h i s  per iod of development and are thoroughly elaborated upon within 
the  r epor t .  
surrounding and i n  contact  with t h e  o u t e r  sur face  o f  t h e  inner  vessel, while 
t h e  isothermally-mounted shroud system has the  secondary f l u i d  contained within 
t h e  shroud i t se l f .  

Two separa te  shroud designs were inves t iga ted  

The integrally-mounted shroud system has t h e  secondary f l u i d  

I n  addi t ion  t o  explor ing t h e  shroud concept, t h i s  program f u r t h e r  
explored t h e  use of a vapor-cooled d i s c r e t e  r a d i a t i o n  s h i e l d  as a means of  
reducing heat  loss of t h e  s to red  f l u i d s .  
r ad ia t ion  s h i e l d  proved highly e f f e c t i v e  when used with t h e  shrouded 
cryogenic s torage  design i n  t h a t  it maximizes t h e  u t i l i z a t i o n  of t h e  vented 
secondary shroud f l u i d .  

The use of a vapor-cooled d i s c r e t e  

The shroud system was shown t o  be an e f f e c t i v e  design f o r  both pre- 
launch and i n - f l i g h t  standbys. 
during pre-launch standby s ince  r e f i l l i n g  of  t h e  shroud u n i t  can be done as 
o f t en  as necessary.  
system represents  an improved method of s t o r i n g  helium a t  high d e n s i t i e s  as 
w e l l  as e l imina t ing  loading problems cu r ren t ly  experienced with conventional 
helium s torage  systems. 

I t  is espec ia l ly  e f f e c t i v e  f o r  reducing lo s ses  

I t  was a l s o  found t h a t  a hydrogen-shrouded helium s torage  

1 



I1 REVIEW OF SHROUD CONCEPT 

The major b e n e f i t  r e a l i z e d  from u t i l i z i n g  an e q e n d a b l e  secondary 
cryogenic f l u i d  t o  r e f r i g e r a t e  another  cryogen i n  a f l i g h t  s to rage  system 
is t h e  extension o f  t h e  system standby time. 
o f  t i m e  between loading t h e  primary f l u i d  i n  i t s  s torage  vesse l  and i t s  
i n i t i a l  removal f o r  e i t h e r  pressure  r e l i e f  or supply usage. 

This would encampass t h e  per iod 

The r e f r i g e r a n t  may be required only f o r  extension of  pre-launch standby, 
after which t h e  secondary f l u i d  w i l l  be expel led ,  or w i l l  have been completely 
vaporized. Or, f o r  extended mission dura t ions ,  wherein post-launch standby 
is extremely long,  t h e  secondary f l u i d  can be c a r r i e d  on board and reserved 
f o r  i n - f l i g h t  cool ing both p r i o r  20 and following t h e  i n i t i a l  withdrawal. 

The vaporizat ion cool ing capac i t i e s  t h a t  are ava i l ab le  from seve ra l  
cryogenic l i q u i d s  are shown i n  Figures 1 and 2 .  
each f l u i d  t h e  l a t e n t  hea t  of  vaporizat ion as w e l l  as t h e  quan t i ty  of  hea t  
required t o  increase  t h e  temperature of  t h e  f l u i d  t o  - 1 O O O F .  
was a r b i t r a r i l y  s e l e c t e d  t o  provide a reasonable comparison o f  t h e  cool ing 
c a p a c i t i e s  o f  t h e  l i q u i d s  when vaporizing within an in su la t ed  dewar. 
a c t u a l  temperature of the  vaporized l i q u i d  e x i t i n g  from a dewar i n t o  t h e  
atmosphere depends upon the  f l u i d  used, i t s  i n i t i a l  thermodynamic s ta te ,  
and t h e  thermal i n s u l a t i n g  c h a r a c t e r i s t i c s  of  t h e  dewar. 

These f i g u r e s  represent  f o r  

This temperature 

The 

Figure 1 shows t h a t  hydrogen has t h e  g r e a t e s t  cool ing capaci ty  p e r  u n i t  
mass, followed by t h e  o the r  f l u i d s  i n  order  of increas ing  dens i ty ,  with t h e  
exception of neon and oxygen. Based upon volume, t he  high dens i ty  f l u i d s  are 
more e f f i c i e n t ,  with oxygen being the  most e f f e c t i v e .  Figures 1 and 2 both 
show t h a t  t he re  is considerable  cool ing ava i l ab le  f o r  most of  t h e  f l u i d s .  

To u t i l i z e  t h e  cooling c a p a b i l i t i e s  of  t hese  cryogenic f l u i d s ,  it is 
necessary t o  s e l e c t  a s torage  system design t h a t  w i l l  r e s u l t  i n  t h e  e f f i c i e n t  
i n t e rcep t ion  o f  hea t  by the  secondary r e f r i g e r a n t .  
f o r  t h e  secondary f l u i d  t o  i n t e r c e p t  t h i s  hea t ,  most of  t h e  hea t  t r a n s f e r  t o  
t h e  primary s t o r e d  f l u i d  is  prevented. 

Thus, by making it poss ib le  

There a r e  p re sen t ly  two designs appl icable  t o  f l i g h t  s torage  systems 
which a r e  based on t h e  use o f  a secondary f l u i d  as a r e f r i g e r a n t ,  
systems a r e  t h e  isothermally-mounted shroud system shown schematical ly  i n  
Figure 3 and t h e  integrally-mounted shroud system shown i n  Figure 4. 

These two 

The design of t h e  t w o  systems is similar i n  t h a t  t h e  secondary r e f r i g e r a n t  
ves se l  surrounds t h e  primary s torage  vesse l .  
does not  allow t h e  shroud f l u i d  t o  phys ica l ly  contac t  t h e  primary vesse l ,  
as does t h e  f l u i d  i n  t h e  i n t e g r a l  system. 

However, t h e  isothermal  design 

ISOTHERMALLY-MOUNTED SHROUD DESIGN 

The isothermally-mounted shroud system cons i s t s  o f  a shroud vesse l  
completely surrounding a sphe r i ca l  i nne r  storage vesse l ,  with both vesse ls  

2 
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enclosed i n  a high vacuum environment. 
from t h e  shroud vesse l  t o  t h e  inne r  ves se l  is  provided by low thermal- 
conduct ivi ty  r a d i a l  bumpers which support  t h e  inne r  s torage  vessel within 
t h e  shroud vesse l ,  Radiant hea t  t r a n s f e r  t o  t h e  inne r  v e s s e l  is minimized 
by the  high vacuum annulus between the  shroud and inne r  vesse l .  

Minimum conductive hea t  t r a n s f e r  

The shroud vesse l  i t se l f  is a completely sepa ra t e  s p h e r i c a l  annulus 
composed o f  an inne r  and o u t e r  s h e l l  fo r  the  purpose o f  s t o r i n g  t h e  secondary 
f l u i d .  The shroud-inner v e s s e l  combination i s  supported wi th in  t h e  ou te r  
s h e l l  by r a d i a l  bumpers, and again with a high vacuum annulus between t h e  
ou te r  s h e l l  and t h e  shroud reducing r a d i a n t  hea t  t r a n s f e r .  
between the  shmud and t h e  i n n e r  ves se l ,  and between t h e  shroud and the  o u t e r  
s h e l l  would not  necessa r i ly  have t o  be sepa ra t e ,  bu t  would be a continuous 
vcdume t o  faci l i ta te  f ab r i ca t ion .  

The vacwm voids 

Further  reduct ion of  r a d i a n t  hea t  t r a n s f e r  t o  
and shroud v e s s e l  is accomplished by using d i s c r e t e  
loca ted  between t h e  shroud and i n n e r  ves se l  as w e l l  
s h e l l ,  The flow of  vaporized € lu id  from t h e  shroud 
through a vapor-cooling c o i l  a t tached  t o  one of t h e  

both t h e  inne r  v e s s e l  
s h i e l d s  which a r e  
as the  shroud and o u t e r  
ves se l  is t r ans fe r r ed  
r a d i a t i o n  s h i e l d s ,  and 

thus  provides a lower temperature environment for t h e  shroud f l u i d .  
same mechod can be used on one o f  t h e  r a d i a t i o n  s h i e l d s  surrounding t h e  
inner  ves se l  t o  u t i l i z e  t h e  primary f l u i d  f o r  vapor cool ing when it is  
withdrawn from che i n n e r  vesse l .  

This 

The r ad ia t ion  s h i e l d s ,  t h e  o u t e r  sur face  of  t h e  inne r  v e s s e l ,  and the  
inner  and o u t e r  su r f aces  of t h e  shroud vesse l  are a l l  s i l v e r  p l a t e d  t o  
provide low-emissivity sur faces  which w i l l  minimize r ad ian t  h e a t  flow. 
Since t h e  o u t e r  s h e l l  is  subjec ted  t o  h igher  temperatures ,  t h e  inner  
sur face  is  copper-plated t o  obta in  minimum emiss iv i ty  f o r  lower r ad ian t  
hea t  t r a n s f e r  t o  t h e  shroud vesse l .  

INTEGRALLY-MOUNTED SHROUD DESIGN 

A s  previously s t a t e d ,  t h e  integrally-mounted shroud system d i f f e r s  
from t h e  isothermally-mounted system i n  t h a t  t h e  secondary cryogenic f l u i d  
phys ica l ly  contac ts  t h e  o u t e r  su r f ace  o f  t h e  inne r  s torage  vesse l .  
is a l s o  no vacuum jacket sepa ra t ing  the  two vesse l s .  
supported wi th in  t h e  shroud vesse l  a t  t h e  r a d i a l  bumper loca t ions .  
r a d i a l  bumper loca t ions  are inver ted  cups i n  t h e  shroud tank ,  which have 
been designed and f ab r i ca t ed  by a secondary forming process t o  come i n  
physical  contac t  with t h e  inne r  vesse l .  
between the  shroud u n i t  and t h e  o u t e r  s h e l l ,  and serve  t o  support  t he  
shroud u n i t  i t se l f  wi th in  t h e  o u t e r  s h e l l .  
t he  annulus between t h e  shroud and o u t e r  s h e l l .  Discre te  r a d i a t i o n  s h i e l d s  
a r e  used, with one s h i e l d  vapor-cooled by vaporizat ion o f  t h e  secondary 
f l u i d  i n  the  shroud. 
u t i l i z i n g  t h e  inne r  ves se l  f l u i d ;  however, t h i s  p a r t i c u l a r  design is not  
shown i n  t h e  schematic. 
and copper-plated, as in t h e  isothermally-mounted shroud design,  t o  minimize 
r ad ian t  hea t  input  by providing low-emissivity r e f l e c t i n g  su r faces .  

There 
The inne r  ves se l  i s  

These 

The r a d i a l  bumpers are loca ted  

A high vacuum is maintained wi th in  

It is also poss ib l e  t o  vapor-cool one s h i e l d  by 

A l l  sur faces  exposed i n  t h e  vacuum annulus a r e  s i l v e r -  



Perhaps t h e  most d i s t i n c t  advantage of t h e  isothermal  design over  t he  
integral  design is t h e  reduct ion o f  t he  d i r e c t  conductive hea t  input  t o  t h e  
inne r  vesse l .  
Figure 4 shows t h a t  conductive pa ths  t o  t h e  inne r  ves se l  from t h e  o u t e r  s h e l l  
e x i s t  through t h e  support  bumpers and shroud s h e l l .  , Thip h e a t  flow is very 
low however, since t h e  support  bumpers are fab r i ca t ed  from low-thermal con- 
d u c t i v i t y  material. Both systems do have d i r e c t  conductive hea t  paths  from 
t h e  o u t e r  s h e l l  t o  t h e  i n n e r  ves se l  through t h e  f i l l  and vent l i n e s ,  b u t  t he  
long lengths  o f  t hese  l i n e s  serve  t o  keep t h i s  hea t  t r a n s f e r  t o  a minimum. 

The schematic of t h e  integrally-mounted system depicted En 

For t h e  same inne r  ves se l  volume i n  both systems, t h e  isothermally-  
mounted shroud system would of necess i ty  involve a l a r g e r  ou te r  s h e l l  and 
increased weight due t o  t h e  a d d i t i o n a l  support  bumpers, longer l i n e s ,  and 
t h e  second shroud s h e l l .  If t h i s  same s i z e  o u t e r  s h e l l  was used f o r  t h e  
integrally-mounted system, with an inne r  vessel s i z e  equiva len t  t o  the  
isothermal  system, larger support  bumpers could be u t i l i z e d  which would 
increase  t h e  path length  o f  t h e  conductive hea t  f l o w  and thereby reduce the  
hea t  t r a n s f e r .  From t h i s  s tandpoin t ,  t h e  i n t e g r a l  system would be com- 
p e t i t i v e  with t h e  isothermal  system, and it would probably remain supe r io r  
i n  terms o f  weight economy. 

When comparing t h e  isothermal  system with t h e  i n t e g r a l  system, it was 
concluded t h a t  t he  isothermal  system presents  f ab r i ca t ion  and assembly 
complications,  and t h a t  t h e s e  complications were n o t  o f f s e t  by e i t h e r  weight, 
s i z e ,  o r  thermal advantages, Therefore,  because i t s  r e l a t i v e l y  simple design 
would r e s u l t  i n  a more r ap id  f a b r i c a t i o n  of a prototype shroud system f o r  
t h i s  con t r ac t ,  t h e  integrally-mounted shroud system was se l ec t ed .  The f i n a l  
prototype design is  similar t o  t h a t  shown i n  Figure 4, and is discussed more 
f u l l y  later i n  t h e  r epor t ,  
a f t e r  a r e  based on an integrally-mounted shroud design. 

A l l  analyses  of t h e  shroud concept discussed here- 

Since t h e  primary s t o r e d  f l u i d  i n  t h e  inne r  s torage  vesse l  is  
separa ted  from the  shroud f l u i d  by only t h e  inne r  ves se l  w a l l ,  it w i l l  be 
assumed i n  a l l  cases t h a t  t h e  two f l u i d s  are a t  t h e  same temperature. Table I 
shows the  melting and b o i l i n g  temperatures,  a t  14.7 p s i a ,  f o r  t h e  s i x  cryogens 
examined i n  Figures 1 and 2. 

TABLE I 

MELTING AND B O I L I N G  POINTS FOR VARIOUS FLUIDS (14.7 ps fa )  

FLUID MELTING POINT O R  BOILING POINT OR 

Oxygen 98.7 162.3 
Argon 150.7 157.1 

Nitrogen 113.9 139.3 
Neon 44.0 48.8 

Hydrogen 25.3 36.7 

Helium 1 . 8  @ 368 p s i a  7.6 
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When both t h e  shroud f l u i d  and t h e  primary f l u i d  are s t o r e d  a t  14.7 p s i a ,  
then from Table I var ious combinations o f  f l u i d s  can be s e l e c t e d  such t h a t  
t h e  primary cryogen is  e i t h e r  s o l i d , l i q u i d ,  or gaseous, depending upon the  
temperature of the  shroud f l u i d .  
from t h e  d a t a  are those  i n  which t h e  shroud f l u i d  and/or t h e  primary f l u i d  are 
pressur ized .  
above or below t h e i r  i nd iv idua l  s u p e r c r i t i c a l  p ressures .  
o f  an a n a l y s i s  of a l l  such combinations, only a f e w  w i l l  be examined i n  t h i s  
r epor t .  
cooling. 
p a r t i c u l a r  s to rage  condi t ion is obviously a t t a i n a b l e ,  and may have very 
d e f i n i t e  app l i ca t ions  for long item cryogenic s torage .  

Other combinations which may be implied 

Fur ther ,  t h e  pressur ized  f l u i d s  may be s t o r e d  a t  pressures  
Due t o  the  complexity 

These analyses  w i l l  be r ep resen ta t ive  of  t h e  e f f e c t i v e  use o f  shroud 
Storage o f  s o l i d  cryogens has not  been considered; however, t h i s  

SHROUD AND PRIMARY FLUIDS AT 14.7 PSIA 

Cer ta in  combinations of t h e  cryogens i n  Table I are impossible for 
t h i s  app l i ca t ion  i f  no s o l i d i f i c a t i o n  is des i red .  
argon-oxygen combinations are poss ib le .  

Only nitrogen-oxygen and 

'There are two a l t e r n a t i v e s  for  u t i l i z i n g  a l i q u i d  n i t rogen- l iqu id  oxygen 
combinatioq 
I t  w i l l  be assumed t h a t  t h e  primary s to rage  f l u i d  is  oxygen, due t o  i t s  appl ica-  
t i o n  i n  environmental con t ro l  and f u e l  ce l l  systems. 
temperature of  vented n i t rogen  is below t h a t  of  oxygen, a f i l l  procedure would 
be requi red  tha.f would permit continuous c i r c u l a t i o n  of l i q u i d  n i t rogen  i n t o  
t h e  shroud u n t i l  t h e  l i q u i d  oxygen has been subcooled t o  l i q u i d  n i t rogen  
temperature.  When t h e  system has been completely f i l l e d ,  r a d i a n t  hea t  input  
t o  the  shroud-inner ves se l  assembly through t h e  high vacuum void will vaporize 
only n i t rogen  i n  t h e  shroud, maintaining a con t ro l l ed  temperature environment 
f o r  t he  oxygen. 
vaporize 

depending upon which i s  s e l e c t e d  as t h e  primary s torage  f l u i d .  

Since t h e  b o i l i n g  

Due t o  i ts  subcooled s ta te ,  t h e  l i q u i d  oxygen w i l l  not  

Conductive hea t  input  t o  t h e  system, mainly through the  r a d i a l  sxpport  

Additional 
bumpers, could cause some hea t  t r a n s f e r  d i r e c t l y  i n t o  t h e  inne r  vesse l .  
Accompanying t h i s  would be a temperature rise wi th in  t h e  oxygen. 
hea t  w i l l  t r a n s f e r  t o  t h e  oxygen when,the l i q u i d  l e v e l  i n  t h e  shroud dec l ines  
( i n  a 1-g environment) and t h e  shroud gas phase surrounds more o f  t h e  inne r  
vesse l .  Heat w i l l  then be t r a n s f e r r e d  from t h e  shroud t o  t h e  inne r  ves se l  by 
conduction through t h e  shroud gas phase. A s  a r e s u l t  o f . t h e  temperature r i s e  
i n  t h e  oxygen, and with t h e  n i t rogen  vaporizing a t  constant  temperature,  a 
temperature d i f f e r e n t i a l  w i l l  e x i s t  and hea t  w i l l  flow from t h e  oxygen t o  the  
ni t rogen.  
no hea t  remaining i n  t h e  oxygen t o  cause vaporizat ion.  
maintained charged with l i q u i d  n i t rogen ,  very l i t t l e  oxygen loss should r e s u l t .  

Eventually an equi l ibr ium condi t ion w i l l  e x i s t ,  with l i t t l e  or 
If t h e  shroud i s  

Liquid argon can be u t i l i z e d  i n  t h e  shroud i n s t e a d  o f  l i q u i d  n i t rogen  
as a secondary r e f r i g e r a n t  t o  cool l i q u i d  oxygen. 
l i q u i d  oxygen would be subcooled only 5 Ro t o  equal  t he  temperature o f  t he  
vaporizing argon, compared with a subcooling of  23 Ro t o  equal  l i q u i d  ni t rogen 
temperature. It appears t h a t  l i q u i d  n i t rogen  would the re fo re  be more s u i t a b l e  
f o r  cool ing l i q u i d  oxygen, 

I n  t h i s  case, however, t h e  

9 



PRIMARY FLUID PRESSURIZED 

The most e f f e c t i v e  use for  shroud cool ing a primary s to red  f l u i d  r e s u l t s  
when t h e  primary f l u i d  is  pressur ized  above atmospheric pressure.  
6 and 7 show the  effects o f  pressure  on t h e  dens i ty  of oxygen, hydrogen, and 
he l iup ,  r e spec t ive ly ,  when s t o r e d  a t  various temperatures corresponding t o  the  
shroud l i q u i d .  Using these  d a t a ,  t h e  s torage  of oxygen, hydrogen and helium 
i n  shrouded systems was examined. A common inner  s torage  vesse l  o f  T i  6A1-4V, 
with an inne r  diameter of  26,500 i n . ,  was s e l e c t e d  for t he  ana lys i s .  
f l u i d  s to rage  pressures  of 3000, 1500, and 500 psia were chosen. Inner  ves se l  
wall th ickness  was ca l cu la t ed  according t o  t h e  following formula: 

Figures 5, 

Primary 

S F x P x C  
4 x UTS t -  

A UTS for T i  6A1-4V of 140,000 p s i  a t  530°R and a s a f e t y  f a c t o r  of  2 
were u t i l i z e d  i n  t h e  ca l cu la t ions .  No f a c t o r  w a s  used i n  t h e  ca l cu la t ions  t o  
account for t h e  creep c h a r a c t e r i s t i c s  o f  T i  6A1-4V a t  cryogenic temperatures.  
If used, t h i s  f a c t o r  would decrease t h e  material e f f i c i e n c y  t o  about 75%, thus  
r e s u l t i n g  i n  a l a r g e r  w a l l  th ickness  and vesse l  weight. The da ta  presented i n  
t h i s  s ec t ion  are the re fo re  use fu l  for comparison purposes only,  and do not  
represent  a c t u a l  system weights,  Inner  ves se l  weight was based upon a dens i ty  
of 0.16 lb / in3 .  

Standby time was based upon t h e  t i m e  requi red  f o r  a l l  shroud l i q u i d  
t o  vaporize and expand t o  - 1 O O O F  a t  1 4 * 7  ps ia .  The amount o f  hea t  requi red  
pe r  u n i t  volume was taken d i r e c t l y  from t h e  da t a  presented i n  Figure 2.  
rate of hea t  input  t o  t h e  shroud f l u i d  was assumed t o  be dependent upon t h e  
shroud l i q u i d  temperature,  based upon accumulated da ta  from numerous cryogenic 
s torage  dewars manufactured and t e s t e d  a t  Bendix. 
presented i n  T a b l e  I1 were used i n  t h e  ana lys i s .  

The 

The hea t  input  rates 

TABLE I1 

HEAT INPUT RATES FOR VARIOUS SHROUD FLUIDS 
PURE VACUUM INSULATION 

Q 
HEAT INPUT 

SHROUD FLUID BTU/hr-ft2 SHROUD 

Oxygen 1 . 2  

Argon 1 . 2  

N f t ro gen 1 . 2  

Neon 1 . 0  

Hydrogen 1 . 0  

Standby time was t he re fo re  determined from t h e  following : 
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Variation i n  standby t i m e  was accomplished by changing the  diameter of 
t he  shroud vesse l ,  thus  varying the  volume of  shroud l iqu id .  
shroud w a l l  th ickness  was ca lcu la ted  from the  following modified Zoelly 
equation : 

The T i  6A1-4V 

I 
_II_ 

t = D  ISF x P x i3(1-v2> 

4 x Y x 0 .214  

A s a fe ry  f a c t o r  of  2 ,  modulus of e l a s t i c i t y  of  17.5 x 1 0  6 p s i ,  
Poisson's r a t i o  of 0.3, and ex te rna l  pressure of  14.7 p s i a  were used i n  
the  ca lcu la t ions .  

Outer s h e l l  w a l l  th ickness  was determined from the  modified Zoelly 
buckling equation. 
r e su l t i ng  i n  a modulus of e l a s t i c i t y  of  29 x l o 6  p s i  and PoIssonls r a t i o  
of 0.3. 
used i n  the  ca lcu la t ions .  
0029 lb;/in3. 

304L s t a i n l e s s  s t e e l  was se l ec t ed  as ou te r  s h e l l  material, 

A s a fe ty  f a c t o r  of 1 . 5  and ex terna l  pressure of  14.7 psis were 
Outer s h e l l  weight was based upon a densi ty  of 

Both pre-launch and i n f l i g h t  cooling o f  oxygen , hydrogen and helium 
were examined, 
pressure and shroud l iqu id  on the dry-shroud system weight and standby time. 
The p lo t t ed  r a t i o  "Dry-Shroud System Weight/Primary Fluid Weight" cons is t s  
of the r a t i o  of the  sum of the  ou te r  s h e l l ,  shroud vesse l ,  inner  vesse l ,  
and primary f l u i d  weights t o  the  primary f l u i d  weight. 
appl icable  , therefore  , t o  a system i n  which the  shroud is "dry" , or completely 
empty, a t  launch, bu t  with no primary f l u i d  loss during the  pre-launch 
(ground) standby per iod.  
l i n e s ,  support bumpers , etc . ,  were not included. 
be near ly  constant f o r  a l l  systems; therefore  the  f igures  show t rends  and 
not ac tua l  system weight r a t i o s .  

Figures 8 through 1 0  show the  e f f e c t s  of i nne r  s torage 

This r a t i o  is  

Additional system weight components such as f i t t i n g s ,  
This addi t ion ,  however, w i l l  

The r e s u l t s  presented i n  Figure 8 show t h a t  of the  th ree  pressures  
examined, an oxygen system a t  t h e  s u b c r i t i c a l  pressure of 500 p s i a  and cooled 
by l i qu id  ni t rogen is l i g h t e s t  i n  weight f o r  pre-launch cooling. 
cooling r e s u l t s  i n  p r a c t i c a l l y  the  same r e s u l t s ,  with the  d i f fe rence  being 
the  lower dens i ty  of oxygen a t  l i qu id  argon temperature. Neon cooling of 
hydrogen a t  500 p s i a  was found t o  be the  most weight economical, as shown 
i n  Figure 9.  
decreases with decreasing hydrogen pressure,  while f o r  ni t rogen and argon 
cooling, system weight decreases with increasing hydrogen pressure.  
was not considered as a shroud r e f r ige ran t  f o r  hydrogen. 

Argon 

It is i n t e r e s t i n g  t o  note t h a t  f o r  neon cooling, system weight 

Oxygen 

Pre-launch cooling of helium s to red  a t  1500 p s i a  and cooled by l i q u i d  
hydrogen is shown i n  Figure 1 0  t o  r e s u l t  i n  t h e  l i g h t e s t  system weight. 
Both 500 and 3000 p s i a  helium s torage  pressures  r e s u l t  i n  higher  system 
weights, f o r  both hydrogen and neon shroud cooling. Since t h e  ana lys i s  
was l imited t o  th ree  primary s torage pressures ,  no optimization w a s  intended 
i n  t h i s  examination. t h a t  a minimum system weight can 
be obtained with hydrogen cooling of helium a t  some pressure between 1500 and 
3000 ps ia .  

The r e s u l t s  ind ica te  

14 
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It was a n t i c i p a t e d  t h a t  neon would be more e f f e c t i v e  than hydrogen as a 
shroud r e f r i g e r a n t  for  helium. 
cool ing capaci ty  ( see  Figure 21, r e l a t i v e l y  low temperature,  and the  
t h a t  i t s  dens i ty  does not  affect t h e  dry-shroud system weight. 
lower temperature of l i q u i d  hydrogen permits a h igher  helium s to rage  dens i ty .  
Thus, t h i s  increased storage weight of  t h e  primary f l u i d , o f f s e t s  t h e  increased 
volume and weight required for  a hydrogen shrouded system t o  produce standby 
times comparable t o  those  a t t a i n e d  by l i q u i d  neon. 
condi t ion.  

This assumption was based upon i ts  largen, 
fact 

However, t h e  

Figure 10 dep ic t s  t h i s  

A s  previously s t a t e d ,  standby times were var ied by increas ing  t h e  shroud 
volume. 
it would not  be weight economical t o  design t h e  shroud f o r  one f i l l i n g  when 
pe - l aunch  cool ing is  i ts  primary funct ion.  
designed based upon 50-100 hours standby t i m e ,  and i f  standby i s  continued 
beyond t h a t  t i m e ,  t h e  shroud could be r e f i l l e d  as o f t e n  as is necessary.  
The e f f e c t  of  shroud s i z i n g  f o r  100 hours standby i s  shown f o r  t h e  optimum 
f l u i d s  i n  Figures 8 through 10. 

R e f i l l i n g  of t h e  shroud system is  e a s i l y  accomplished, and the re fo re  

Therefore,  a system could be 

I n f l i g h t  cool ing of  t h e  t h r e e  primary f l u i d s  i s  examined i n  Figures 1l 
through 13. The "Wet-Shroud System Weight" c o n s i s t s  of  t h e  sum o f  t h e  o u t e r  
s h e l l ,  shroud vesse l ,  shroud f l u i d ,  i nne r  ves se l ,  and primary f l u i d  weights. 
This r a t i o  is appl icable  t o  a system i n  which t h e  shroud is  completely 
f i l l e d  (and vent ing)  a t  launch. 
of t h e  shroud f l u i d  d e n s i t i e s  on f l i g h t  system weights.  

These f i g u r e s  the re fo re  show t h e  effects 

The minimum system weights f o r  s to rage  of  t h e  t h r e e  f l u i d s  r e s u l t e d  
from t h e  same combination of primary s to rage  pressure  and shroud f l u i d  as 
noted i n  t h e  pre-launch cool ing  curves.  
per iod  s t u d i e d ,  1000 
most weight economical for i n f l i g h t  oxygen cool ing (See Figure 11). 
shows t h a t  neon cool ing of 500 p s i a  hydrogen r e s u l t s  i n  t h e  l i g h t e s t  system 
weight, 
decreasing hydrogen s to rage  pressure  f o r  neon cool ing ,  whereas system weight 
decreases  with inc reas ing  s to rage  pressure  f o r  n i t rogen  and argon cool ing.  
Helium s to red  a t  1500 p s i a  and cooled by l i q u i d  hydrogen r e s u l t e d  i n  t h e  
l i g h t e s t  f l i g h t  system, as shown i n  Figure 13. 
dens i ty  is shown on t h e s e  curves.  
show weight changes as r ap id ly  as t h e  neon-cooled systems. 

Based upon t h e  maximum standby 
hours ,  n i t rogen  cool ing of oxygen a t  500 p s i a  was 

Figure 1 2  

I t  was again noted t h a t  hydrogen system weight decreases with 

The e f f e c t  o f  t h e  high neon 
Systems cooled by l i q u i d  hydrogen do not  
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INSULATION EFFECTS 

The r e s u l t s  presented i n  Figures 8 through 1 3  were based upon a 
shroud s torage  vesse l  with pure vacuum insu la t ion .  
cryogens may be f u r t h e r  reduced by u t i l i z a t i o n  of add i t iona l  insu la t ion  
techniques,  thus increasing standby t i m e .  
include laminar i n su la t ion ,  d i sc re t e  r ad ia t ion  s h i e l d s ,  and vapor-cooled 
sh ie lds .  

Heat input  t o  the  s to red  

Insu la t ion  techniques examined 

LAMINAR INSULATION 

Laminar in su la t ion  is  composed of numerous a l t e r n a t e  layers  of  r ad ia t ion  
sh ie ld ing  material and low Conductivity spacing material. The usual method 
of appl ica t ion  t o  cryogenic s torage  vessels  cons i s t s  o f  bu i ld ing  up the  
in su la t ing  layers  on t h e  outs ide  sur face  of t he  inner  s torage  vesse l ,  which 
is i n  tu rn  enclosed within a high vacuum environment. 
Linde 51-62 insu la t ion  was se lec ted  as a t y p i c a l  example of laminar insu la t ion  
t o  be used €or i n su la t ing  a shroud-inner vesse l  assembly. The following 
thermal 'conductivity values ,  obtained from the  bes t  da ta  ava i l ab le ,  were 
used as a bas i s  f o r  t h i s  exercise. .  Their values are based on f l a t  p l a t e  
da ta .  

For comparison purposes, 

TABLE 111 

THERMAL CONDUCTIVITY FOR LINDE S1-62 INSULATION 
NON-COMPRESSED, FLAT PLATE 

BETWEEN 530°R AND TEST TEMPERATURE 

TEST TEMPERATURE 
O R  

THERMAL CONDUCTIVITY 
BTU/hr-ft2 O R / f t  

36.7 2.7 

162 ,, 3 2 . 2  

Tests conducted with super insu la t ing  mater ia ls  wrapped around sphe r i ca l  
containers  have indicated t h a t  thermal conductivity is  g rea t e r  than t h a t  
obtained with f l a t  p l a t e  t e s t s .  These e f f e c t s  are more apparent with smaller 
diameter vessels  than with l a r g e r  spheres.  
t he  conductivity values presented i n  Table I11 were mult ipl ied by a f a c t o r  of 
3 ,  which more c lose ly  r e s u l t s  i n  the  hea t  input  r a t e s  expected f o r  a s torage  
u n i t  of the  s i z e  s tud ied .  It w a s  assumed t h a t  t h e  super insu la t ion  w a s  a t tached 
t o  the  outer  sur face  of t he  shroud vessel ,  and completely f i l l e d  the  evacuated 
void between the  shroud and outer  vacuum jacke t .  
combinations of s torage  pressure and shroud f l u i d  given i n  Figures 8 
through 13 were used t o  compare the 'var ious  in su la t ing  techniques examined 
i n  t h i s  sec t ion .  
cooling oxygen a t  500 p s i a  s torage  pressure,  l i qu id  neon cooling hydrogen a t  
500 ps i a ,  and l i q u i d  hydrogen cooling helium a t  1500 ps i a .  Table I V  p resents  
t he  modified thermal conductivity values used f o r  super insu la t ing  t h e  shroud- 
inner  vesse l  combinations. 

To account f o r  these  discrepancies ,  

Only the  weight-optimum 

Three shroud f l u i d s  were therefore  used, with l i qu id  ni t rogen 
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TABLE I V  

THERMAL CONDUCTIVITY FOR LINDE 51-62 INSULATION 
NON-COMPRESSED, FTC = 3 

BETWEEN 530°R and SHROUD FLUID TEMPERATURE 

SHROUD FLUID 

Nitrogen 

Q 
THERMAL CONDUCT I V I T Y  

BTU/hr-ft* * R / f t  

8.1 10-5 

Neon 6.6 x 

Hydrogen 6.6 x 10’’ 

Standby time f o r  t h e  super insu la ted  shroud u n i t s  was determined from 
t h e  following: 

Two super insu la t ion  th icknesses ,  0.5 inch and 1.0 inch,  were used, 
Insula%ion weight was based on a dens i ty  of  4.7 l b / f t 3 .  

DISCRETE RADIATION SHIELD INSULATION 

A d i s c r e t e  r ad ia t ion  s h i e l d  i s  a l o w  emiss iv i ty  r a d i a t i o n  b a r r i e r  placed 
i n  t h e  vacuum space and isothermally-mounted t o  some support  s t r u c t u r e ,  A t  
equi l ibr ium, it assumes some intermediate  temperature between t h e  i n n e r  and 
outer v e s s e l  surface temperatures.  
d i s c r e t e  sh ie lded  vesse l s  4s  e f f ec t ed  by s o l i d  conduction through supports  
and in te rconnec t ing  l i n e s ,  thermal t r a n s f e r  by t h e  r e s i d u a l  gas ,  and thermal 
r ad ia t ion .  

The hea t  t r a n s f e r  between t h e  sur faces  i n  

I n  a high vacuum iAsulated vesse l ,  with w e l l  designed supports  and 
plumbing, more than h a l f  o f  t he  h e a t  t r a n s f e r  t o  t h e  cryogenic f l u i d  is 
t h e  r e s u l t  o f  r a d i a t i o n ,  
t he  temperatures of t h e  sur faces  remain constant  and t h e  emiss iv i ty  f a c t o r  
l i m f t s  t h e  rate of  r a d i a n t  hea t  t r a n s f e r .  The use o f  d i s c r e t e  s h i e l d s  with 
good thermal i s o l a t i o n  i n  t h e  vacuum space w i l l  s u b s t a n t i a l l y  reduce t h e  r ad ian t  
hea t  t r a n s f e r ,  
a l l  p a i r s  of  sur faces  i n  a dewar, and s h i e l d s  are thermally i s o l a t e d ,  t he  thermal 
t r a n s f e r  rate t o  t h e  inne r  tank may be expressed as: 

When a dewar has e s t ab l i shed  equi l ibr ium hea t  t r a n s f e r ,  

For example, when t h e  emiss iv i ty  f a c t o r s  are t h e  same between 

Q uA- E (Tq4- T14) 
( n + l )  

n = number o f  d i s c r e t e  s h i e l d s  
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The heat-input rates t o  t h e  shroud f l u i d  f o r  one- and two-shielded 
systems are presented i n  Table V. 
da t a  from various cryogenic s torage  dewars manufactured and t e s t e d  a t  Bendix, 

These values are based on accumulated 

TABLE V 

HEAT INPUT RATdS FOR VARIOUS SHROUD FLUIDS 
DISCRETE RADIATION SHIELD INSULATION 

SHROUD FLUID NO. SHIELDS 

Nitrogen 1 

Q 
HEAT INPUT 

BTU/hr-ft2 SHROUD 

0.8 

Nitrogen 2 0.6 

Neon 1 0.75 

Neon 2 0.5 

Hydrogen 1 0.75 

Hydrogen 2 0.5 

Standby t i m e  f o r  t h e  shielded u n i t s  was determined from the  following: 

6 = Q’ Vs 
Q A s  

Insu la t ion  weights were based on Mg s h i e l d s ,  with 0.015 i n .  w a l l  
Spacing and loca t ion  o f  s h i e l d s  within t h e  vacuum void were thickness .  

ppedicated on f ab r i ca t ion  and assembly l i m i t a t i o n s .  

VAPOR-COOLED SHIELDS 

A vapor-cooled s h i e l d  is a d i s c r e t e  r ad ia t ion  s h i e l d  t h a t  is cooled by 
t h e  e f f l u e n t  f l u i d  from t h e  tank it is sh ie ld ing .  
below t h a t  of  a simple d i s c r e t e  s h i e l d  and provides a more e f f e c t i v e  r ad ia t ion  
sh ie ld .  
t o  vapor-cooled s h i e l d s  i n  t h a t  they  are thermally i s o l a t e d  from t h e  tank and 
adjacent  s h i e l d s ,  and t h e r e  i s  an absence of gas between t h e  sh i e lds .  

This reduces t h e  temperatme 

The same requirements t h a t  apply t o  simple d i s c r e t e  sh i e lds  a l s o  apply 

I n  p r a c t i c e ,  f l u i d  i ssu ing  from a dewar inne r  tank is routed e i t h e r  
through a double walled d i s c r e t e  shqeld,  o r  through tubes o r  channels a t tached 
t o  a d i s c r e t e  s h i e l d .  
w i l l  be accomplished before  t h e  f l u i d  reaches t h e  normal vent o r  supply Pine 
t o  t h e  outs ide of t h e  dewar. 
t u re  as t h e  f l u i d  i n  e i t h e r  t h e  inne r  tank o r  shroud, depending upon which 
f l u i d  is being u t i l i z e d ,  and leaves t h e  s h i e l d  a t  t h e  s h i e l d  temperature if 
the  hea t  exchange is complete. 

E f f i c i e n t  hea t  exchange between t h e  f l u i d  and s h i e l d  

The f l u i d  e n t e r s  t h e  s h i e l d  a t  t h e  same tempera- 

Therefore, hea t  reaching a vapor-cooled s h i e l d  
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is divided i n t o  two por t ions .  
f l u i d  passing through and ca r r i ed  outs ide  t h e  dewar, and the  o the r  port ion 
passes on t o  t h e  inner  tank (or shroud vesse l ,  i f  appl icable) .  The vapor- 
cooled s h i e l d  w i l l  come t o  a lower equi l ibr ium temperature, and therefore  the  
heat  t r ans fe r r ed  t o  t h e  inner  tank (or shroud) w i l l  be less than t h a t  of  a non 
vapor-cooled sh ie ld .  The hea t  absorbed by t h e  f l u i d  as it passes through t h e  
vapor-cooled sh ie ld  w i l l  be equal  t o  i ts  change i n  enthalpytwithin the  s h i e l d  
i f  pressure remains constant .  Considering t h e  hea t  t r a n s f e r  between sur faces  
t o  be composed of  components of  r ad ia t ion  and conduction, t h e  following 
r e l a t i o n s  may be appl ied t o  dewars with a vapor-cooled sh ie ld ,  

One por t ion  is t h a t  which is  absorbed by t h e  

The rate of  hea t  t r a n s f e r  (Q1) t o  a vapor-cooled sh ie ld . f rom enclosing 
surfaces  is: 

Q1 .= R 1  * e l o  
where R1 and C1 are rad ia t ion  and conduction components. 

e f f l u e n t  f l u i d ,  t he  rate of  heat  t r a n s f e r  (42) f r o m  a vapor-cooled s h i e l d  t o  
enclosed sur faces  may be expressed as: 

Since the  heat  a r r i v i n g  a t  t h e  cooled s h i e l d  i s  p a r t l y  absorbed by t h e  

42 = k2 C 2 ,  

Q1 - Q 3 ,  

where R and C 
a t  whic8 heat  is absorbed by the  e f f l u e n t  f l u i d .  
of mass flow of  f l u i d  from t h e  inne r  container  and i t s  change i n  s p e c i f i c  
enthalpy as it passes through the  vapor cooled sh ie ld :  

Q3 = k Ah. 

are r ad ia t ion  and conduction components and Q3 is  t h e  rate 
Q3 depends upon t h e  rate 2 

It follows t h a t :  

The appl ica t ion  of vapor-cooled sh ie ld ing  t o  the  shroud tank system 
cons is rs  of  u t i l i z i n g  the  vented shroud f l u i d  f o r  t he  vapor-cooling funct ion.  

Heat input  rates t o  t h e  shroud f l u i d  f o r  a simple vapor-cooled sh ie ld  
and f o r  two sh ie lds  with one being vapor-cooled are presented i n  Table V I .  
Again, these  values are based on d a t a  accumulated from tes t  programs at  Bendix, 
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TABLE V I  

HEAT INPUT RATES FOR VARIOUS SHROUD FLUIDS 
VAPOR-COOLED RADIATION SHIELD INSULATION 

Q 
HEAT INPUT 

SHROUD FLUID NO. SHIELDS NQ V-C SHIELDS BTU/hr- f t  

N i t rogen 1 1 0.60 

Nitrogen 2 1 0.30 

Neon 1 1 0,50 

Neon 2 1 0.25 

Hydrogen 1 1 0.50 

Hydrogen 2 1 0.25 

Standby time was determined by t h e  same ca l cu la t ions  as those used 
for  d i s c r e t e  r ad ia t ion  s h i e l d s .  
vapor-cooling funct ion by assuming t h e  use o f  1/4" s t a i n l e s s - s t e e l  tub ing  
spaced a t  3.2 f e e t  of tub ing  pe r  square foo t  of s h i e l d  sur face  area. 

Insu la t ion  weights were increased f o r  t h e  

Figures 14  through 16 represent  t h e  r e s u l t s  of applying various 
in su la t ion  techniques t o  t h e  optimum pre-launch shroud cool ing systems shown 
i n  Figures 8 through 10, 
systems have r e l a t i v e l y  good standby t imes,  without t he  add i t iona l  weight of  
super  i n s u l a t i o n  o r  d i s c r e t e  s h i e l d s .  

All t h r e e  figures show t h a t  pure vacuum-insulated 

When l i q u i d  n i t rogen  is  used t o  cool  oxygen a t  500 p s i a  (Figure 14), 
system weight advantages f o r  pure vacuum insu la t ion  are obtained f o r  pre-launch 
standby times up t o  385 hours.  
hydrogen a t  500 p s i a  t h a t  vacuum i n s u l a t i o n  is  t h e  weight-optimum technique 
f o r  pre-launch standby t i m e  up t o  415 hours.  
t o  260 hours ,  pure vacuum i n s u l a t i o n  provides t h e  l i g h t e s t  system weight when 
using l i q u i d  hydrogen t o  cool  helium a t  1500 p s i a .  

Figure 15  shows t h a t  with neon cool ing of 

For  pre-launch standby t i m e  o f  up 

Variat ions i n  standby times f o r  t h e  shrouded u n i t s  o f  Figures 1 4  through 
96 were obtained by increas ing  t h e  shroud volume, as i n  Figures 8 through 10. 
It  has previously been shown t h a t  t h e  shroud volume can be s i z e d  for  only 50-100 
hours standby time and r e f i l l e d  with shroud f l u i d  i f  pre-launch standby t i m e  
is increased.  The effect of a shroud s i z e d  f o r  50 hours standby is  shown on 
the  vacuum-insulated shroud systems i n  Figures 1 4  through 16. 
it is apparent t h a t  f o r  dry-shroud system weight opt imizat ion,  no in su la t ion  
techniques are needed i n  addi t ion  t o  pure vacuum insu la t ion .  That is ,  f o r  
maximum ground standby c a p a b i l i t y  with minimum system weight a t  launch, t h e  
optimum shroud system should be s i z e d  f o r  some reasonable standby t i m e  and 
should be s o l e l y  vacuum insu la t ed .  

From t h i s  d a t a  
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For an ac tua l  system appl ica t ion ,  wherein t h e  primary s torage f l u i d  must 
be insu la ted  in - f l i gh t  as w e l l  as during ground standby, t he  r e s u l t s  presented 
i n  Figures 14 through 1 6  may be somewhat misleading. 
shroud a t  launch it has been shown t h a t  pure vacuum insu la t ion  is most e f f e c t i v e  
for system weight and pre-launch standby optimization. 
insu la t ion  would be inadequate f o r  extended standby times during f l i g h t .  
r e l a t i v e  weights and in su la t ing  c a p a b i l i t i e s  of  laminar i n su la t ion  and d i s c r e t e  
vapor-cooled r ad ia t ion  sh ie lds  shown i n  Figures 1 4  through 16 ind ica te  t h a t  the  
dfscse te  r ad ia t ion  s h i e l d  concept with vapor-cooling by the primary s torage  
f l u i d  would be optimum, 
shroud f l u i d  is expended a t  launch, d i sc re t e  vapor-cooled rad ia t ions  sh i e lds  
would be u t i l i z e d  f o r  ove ra l l  system optimization. 

With a dry or empty 

However, pure vacuum 
The 

Therefore,  i n  a p r a c t i c a l  appl ica t ion  wherein t h e  

Figures 17 through 19 represent  the  appl ica t ion  of  various in su la t ing  
techniques t o  the  optimum in - f l i gh t  shroud cooling systems discussed i n  Figures 
11 through 13. 
noted i n  dry-shroud systems. For l i q u i d  ni t rogen cooling of oxygen a t  500 
p s i a  s torage pressure,  t he  two-shield in su la t ing  mechanism with one sh ie ld  
vapor-cooled by ni t rogen is  shown t o  be optimum after 50 hours standby (Figuree 17) .  
The same insu la t ing  technique fs weight and standby optimum f o r  l i q u i d  neon 
cooling of hydrogen a t  500 p s i a  f o r  standby times i n  excess of  60 hours 
(Figure 18) .  
far  in - f l i gh t  cooling of helium a t  1500 ps i a  by l i qu id  hydrogen, f o r  standby 
times up t o  185 hours. 
cooled by hydrogen, proves t o  be optimum f o r  longer standby times. 

Pure vacuum insu la t ion  advantages are not  r ea l i zed  t o  the  degree 

Figure 19 shows t h a t  pure vacuum insu la t ion  is weight-advantageous 

The two-shield system, with one sh ie ld  being vapo-r- 

Sizing of t he  shroud volume f o r  i n - f l i gh t  cool ing must be based upon the  
expected standby t i m e  during f l i g h t .  
shown t h a t  the  shroud volume could be l imi ted  t o  some reasonable value,  with 
r e f i l l i n g  procedures increasing standby as required e 
t he  shroud f l u i d  must be s tored  i n  the  system a t  launch. Standby times were 
therefore  var ied i n  Figures 1 7  through 19 by changing t h e  volume of the  shroud, 

For ground standby systems, it has been 

During f l i g h t  , however , 

A comparison of t h e  shroud cooling technique with conventional s torage  
procedures f o r  i n - f l i gh t  appl ica t ions  is presented i n  Figures 20 through 22. 
The th ree  concepts considered a r e  (1) shroud cooling systems, ( 2 )  conventional 
non-venting systems, and (3) conventional venting systems. 

Standby t i m e  f o r  t h e  shroud cooling systems is considered t o  be the  
time period between launch (with shroud f u l l )  and the  rime when a l l  shroud 
f l u i d  has vaporized and expanded t o  -100OF. A l l  shroud systems employ rhe 
two-shield in su la t ing  technique, with one sh ie ld  being vapor-cooled by the  
shroud f l u i d .  
the  shroud vessel .  

Standby t i m e  is  var ied by changing the  volume capaci ty  of  

For conventional non-venting systems, standby t i m e  is  the  period between 
f i l l i n g  the  s torage  vesse l  and the  t i m e  t h a t  t he  s torage  vesse l  pressure 
a t t a l n s  t h a t  value u t i l i z e d  with the  comparable shroud system primary vesse l  
pressure.  
r ad ia t ion  sh ie lds  within the  vacuum annulus. 

Standby t i m e  is  increased by increasing t h e  number of  d i sc re t e  

The conventional venting system requi res  t h a t  t he  s torage vessel  be 
i n i t i a l l y  f i l l e d  with a quant i ty  of l i qu id  t h a t  is g rea t e r  than the  required 
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usable amaunt. 
the  s torage  vesse l ,  buildup t o  t h e  maximum operat ing pressure,  and venting of 
the  f l u i d  u n t i l  t he  remaining usable quant i ty  is i d e n t i c a l  t o  t h a t  contained 
i n  the  shrouded and non-venting systems. 
increasing the  number o f  d i s c r e t e  r ad ia t ion  sh ie lds  and t h e  vapor-cooling of 
one of them. 

Standby with t h i s  method is t h e  t i m e  per iod between f i l l i n g  

The standby t i m e  is increased by 

Because o f  t h e  importance o f  system weight a t  t he  end o f  standby, 
both t h i s  value and the  system weight a t  launch a re  considered i n  Figures 20 
through 22 ,  System weighr; a t  launch, f o r  the  shrouded systems, cons i s t s  o f  
t he  primary s torage vesse l ,  primary f l u i d  , shroud vesse l  , shroud f l u i d  , insula-  
t i o n ,  and ouxejr s h e l l  weights. System weight a t  the  end of standby for the  
shrouded systems is ca lcu la ted  on the assumption t h a t  t he  shroud f l u i d  is  
completely vaporized, bu t  t h a t  no primary f l u i d  has been expelled.  
ventional non-vencing system, the  weight a t  launch and a t  the  end of standby 
a r e  iden t i ca l .  
ves se l ,  f l u i d ,  i n su la t ion ,  and ou te r  s h e l l  weights. 
the  f l u i d  weight considered is t h a t  amount required for use. 

For the  con- 

System weight i n  t h i s  technique cons i s t s  of  t he  s torage  
A t  t he  end of  standb3, 

Figure 20 compares vented, non-vented, and shrouded systems f o r  t 
s torage  of oxygen a t  500 p s i a ,  This pressure was se lec ted  s ince  t h e  previous 
exercises  with ni t rogen cooling of oxygen showed t h a t  of the  th ree  pressures  
examined (3000, 1500 ,  and 500 p s i a ) ,  t he  500 p s i a  system proved t o  be optimum 
f o r  both weight and standby t i n e  considerat ions The two-shield vapor-cooled 
ni t rogen shrouded system examined i n  Figure 17 is used i n  t h t s  f igure  f o r  com- 
par ison with the  conventional s torage systems. 
weight of 425.4 lb. is employed i n  all systems. The conventional vented 
s torage  system i n i t i a l l y  contains  460.0 lb. of oxygen and vents 34.6 lb. 
during standby. 
system a r e  500 p s i a  and i39.3°R, The conventional vented and non-vented 
systems a re  i n i t i a l l y  t i l l e d  with oxygen a t  14.7 p s i a  and 162.3OR. 

--- 

A common usable oxygen 

I n i t i a l  oxygen loading conditions f o r  the  ni t rogen shrouded 

ThroughouT the  standby t i m e  period examined, t he  vented oxygen s torage  
system is  l i g h t e r  than the  ni t rogen shrouded system both i n  terms of weight 
a t  launch and weight at  end of standby. The two p l o t s  f o r  the  vented 
system as shown o r ig ina t e  az 460 hours standby. 
f o r  smaller  standby t imes,  s ince  the  460 hour weight r a t i o s  represent  an 
unshielded un i t .  The weight a t  launch f o r  t he  ni t rogen shrouded un i t  is 
nearly the  same as f o r  t h e  vented sysrem i n  the  460-500 hour standby pe 
but  rhe d i f fe rence  increases  with longer standby. Weight a t  the end of 
standby f o r  t he  shrouded system is always considerably higher than t h a t  
t he  vented system, The non-vented oxygen s torage  system is super ior  t o  
both the  vented and the  ni t rogen shrouded systems i n  at-launch weight, f o  
the  standby pe-riod examined. For a l l  standby times, t h e  s p e c i f i c  vented 
system used is l i g h t e r  i n  end-of-standby weight than the  non-vented system. 
A t  950 hours,  t he  ni t rogen shrouded u n i t  is shown t o  be l i g h t e r  than the  
non-vented system a t  end of standby. 

These p l o t s  are meaningless 

A 

For standby times i n  excess of  1000 hours,  t he  t rends shown i n  
Figure 20 ind ica t e  t h a t  the  vented system w i l l  eventual ly  become l i g h t e r  
than the  non-vented system i n  at-launch weight. However, t he  vented 
system chosen is not necessar i ly  the  optimum f o r  the  given usable f l u i d  
weight. 
would remain l i g h t e r ,  at-launch, than the,non-vented u n i t .  

I t  is conceivable t h a t  a vented system could be determined t h a t  
A t  the  same t i m e ,  
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add i t iona l  i n su la t ion  techniques appl ied t o  t h e  ni t rogen shrouded system 
would r e s u l t  i n  lower system weight f o r  a given standby time, both at 
launch and a t  end o f  standby. The shrouded system therefore  could be 
l i g h t e r  than both t h e  vented and non-vented systems a t  launch. 
standby, it does not  appear t h a t  t h e  shrouded system would be l i g h t e r  than 
the  vented system, 

A t  end of  

Shrouded, non-vented, and vented systems f o r  t he  s torage  of  hydrogen 
a t  500 p s i a  are compared i n  Figure 21. 
t o  the  two-shield vapor-cooled system examined i n  Figure 18. A l l  systems 
consider a usable hydrogen weight of  24.0 l b .  
i n i t i a l l y  contains 28.0 I b .  of hydrogen, and vents 4.0 l b .  t o  r e s u l t  i n  a 
usable f l u i d  weighr comparable t o  the  o t h e r  systems. 
loading conditions f o r  the  neon shrouded system are 500 p s i a  and 48.8OR. 
The vented and non-vented systems are i n i t i a l l y  f i l l e d  with hydrogen a t  14.7 
p s i a  and 36.7OR. 

The neon-shrouded system is  i d e n t i c a l  

The vented s torage system 

I n i t i a l  hydrogen 

For standby times i n  excess of 170 hours,  the  neon shrouded system i s  
l i g h t e r  than a non-venting system a t  the  end of standby. 
system -is a l s o  l i g h t e r  than t h e  non-venting system a t  launch , i f  required 
standby is  g rea t e r  than 190  hours. 

The neon shrouded 

The s p e c i f i c  ventfng jystem considered appears t o  be super ior  t o  
the  neon shrouded system a t  launch, f o r  t he  standby times examined (up t o  
1000 hours).  
advantage after 900 hours standby. It was beyond the  scope of th i s '  repor t  
t o  determine an optimum venting system f o r  t he  s p e c i f i c  usable f l u i d  quant i ty  
of 24.0 l b .  hydrogen. 
be designed t h a t  would be super ior  t o  the  shrouded system from an end-of- 
standby weight considerat ion.  The t rends of the curves i n  Figure 2 1  show, 
however, t h a t  f o r  an extremely long standby beyond 1000 hours,  t h e  neon 
shrouded hydrogen system with two sh ie lds  (one vapor-cooled) is the  weight 
optimum system. 
two sh ie lds  would reduce t h e  system weight r a t i o  f o r  a given standby t i m e .  
This was not considered i n  t h i s  r epor t ,  but  t he  r e s u l t s  o f  such an examination 
could show d e f i n i t e  weight advantages f o r  t he  neon shrouded system over a 
conventional venting system, 

The shrouded system does display an end-of-standby weight 

It is therefore  possible  t h a t  a venting system could 

Further i n su la t ion  of t he  shrouded system with more than 

Figure 22 compa.res t he  s torage  of helium a t  1500 p s i a  i n  shrouded, 
vented, and non-vented systems. The shrouded system shown is  the  same two- 
s h i e l d  vapor-cooled in - f l i gh t  cooling system examined i n  Figure 19. 
common usable helium weight of 52,7  lb. is employed i n  a l l  systems. 
vented s torage  system i n i t i a l l y  contains 60.0 l b .  of helium and vents 7.3 
lb. during standby. I n i t i a l  helium loading conditions f o r  t he  hydrogen 
shrouded system are 1500 p s i a  and 36,7OR. 
are i n i t i a l l y  f i l l e d  with helium a t  200 p s i a  and 10°R.  

A 
The 

The vented and non-vented systems 

FOP standby times i n  excess 'of 330 hours, t he  hydrogen shrouded 
system is shown t o  be l i g h t e r  than t h e  non-venting system a t  the  end of 
standby. A t  launch, t he  hydrogen shrouded system weight is l e s s  than t h a t  
of the  non-venting system f o r  standby times o f  345 hours or longer.  
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The 60,O lb. venting system is shown t o  be super ior  t o  the  hydrogen 
shrouded system i n  at-launch weight u n t i l  standby exceeds 400 hours. 
620 hours standby, t h e  hydrogen shrouded system proves t o  be l i g h t e s t  i n  
end-of-standby weight. Further  examination of venting systems having a 
usable helium weight of 52.7 lb. could r e s u l t  i n  an optimum venting s torage  
system, with a l i g h t e r  system weight than the  hydrogen shrouded system, 
f o r  a l l  standby times shown i n  Figure 22. 
techniques (more vapor-cooled r ad ia t ion  sh ie lds )  could be appl ied t o  t h e  
shrouded system t o  increase standby f o r  a given system weight. 
possible  t o  examine a l l  such a l t e rna t ives  i n  t h i s  repor t .  

After 

Conversely, addi t iona l  insu lar ing  

It was not 

One of  t h e  most s i g n i f i c a n t  advantages r ea l i zed  with a hydrogen- 
cooled helium system is r e l a t e d  t o  t h e  t r a n s f e r  procedures required t o  
i n i t i a l l y  f i l l  the  primary s torage  vesse l .  
t i o n ,  low cr i t ical  pressure ,  and low s p e c i f i c  heat  of helium, it is extremely 
d i f f i c u l t  t o  t r a n s f e r  l i q u i d  helium t o  a cryogenic s torage  system. 
reason, cryogenic helium is cur ren t ly  s tored  a t  s u p e r c r i t i c a l  pressures  i n  
ground s torage  dewars and then t r ans fe r r ed  t o  the  f l i g h t  s torage system. 
Typical s torage  and t r a n s f e r  condi t ions a r e  similar t o  t h a t  used i n  t h i s  
examination, i .e .  , 200 p s i a  and 10°R. Transfer  of helium a t  t h i s  state is 
s t i l l  extremely d i f f i c u l t ,  again due t o  the  low s p e c i f i c  heat .  The i n i t i a l  
flow of  helium t o  a f l i g h t  s torage  system r e s u l t s  i n  la rge  helium losses  as 
the  s torage  vesse l  cools from some i n i t i a l  pre-cooled temperature t o  the  
f i n a l  s torage  temperature. Transfer  l i n e s  must be w e l l  insu la ted  t o  r e s u l t  
i n  minimal heat  t r a n s f e r  t o  t h e  helium upstream of t h e  f l i g h t  s torage vesse l .  
Although extreme insu la t ion  techniques are employed throughout the  t r a n s f e r  
system, the  cool-down and loading times a r e  undesirable ,  helium losses  a r e  
high, and s torage dens i t i e s  are not optimum. The hydrogen shrouded helium 
stovage system developed under t h i s  cont rac t  represents  an improved method 
f o r  t he  s torage  of helium a t  high d e n s i t i e s ,  with minimized loading problems. 

Due t o  t h e  low heat  of vaporiza- 

For t h i s  

Ground support equipment f o r  s t o r i n g  helium w i l l  be s impl i f ied  with 
the  hydrogen'shrouded helium storage technique, s ince  t h e  helium need only 
be s tored  a t  ambient temperature and high pressure.  The primary stopage 
vessel  w i l l  be pre-cooled t o  the  f i n a l  s torage  temperature of the  helium 
by loading the  shroud with l i qu id  hydrogen. 
closed, gaseous helium is t r ans fe r r ed  a t  high pressure i n t o  the  u n i t .  
f i l l i n g  operat ion is complete when the  vesse l  contains helium e n t i r e l y  
a t  l i q u i d  hydrogen temperature and the  helium t r a n s f e r  pressure ,  corresponding 
t o  some high helium densi ty .  
f i l l  process,  a continuous supply must be t r ans fe r r ed  t o  the  shroud u n t i l  
the  loading is  complete. 

With t h e  primary s torage  vesse l  
The 

Since hydrogen w i l l  be vaporizing during the  
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I11 SYSTEM DESCRIPTION AND OPERATION 

The Cryogenic Shroud System developed under t h i s  cont rac t  is shown i n  
Figure 23. 
and therefore  c e r t a i n  components are not weight-optimized. 
are located on the  tank mount ca r r i age  t o  provide f o r  f i l l i n g ,  venting, and 
pressur iza t ion  of both the inner  and shroud vesse ls .  
are provided f o r  both vessels .  
maticallv maintained by ac tua t ion  of  a pressure switch which cont ro ls  an 
i n t e r n a l  hea t e r  and motor-fan. 

The system was designed so le ly  f o r  tesit ing the  shroud concept, 
Manual valves 

Pressure relief valves 
The inner  vesse l  operat ing pressure is  auto- 

DEWAR DESCRIPTION 

The Shroud Tank assembly is  shown i n  Figure 24. Physical  Charac te r i s t ics  
of the  tank  are presented i n  Table V I I .  

Figure 24 shows t h a t  t h e  tank assembly cons i s t s  of an inner  pressure 
vesse l  which is surrounded by and permanently a t tached t o  an i n t e g r a l  shroud 
vesse l .  The shroud vesse l  contacts  t h e  ou te r  sur face  of t h e  inner  vesse l  a t  
s i x  s p e c i f i c  loca t ions  where the  shroud s h e l l  is formed i n t o  inverted cups 
t o  accommodate t h e  r a d i a l  support bumpers. 
welded t o  the  Inconel 718 inner  vesse l  f i l l  and vent f i t t i n g s ,  r e su l t i ng  i n  
a permanent shroud-inner assembly, 

The shroud vesse l  is a l s o  he l i - a rc  

Functioning u n i t s  within the  inner  vesse l  are a motor-fan assembly, 
calrod hea te r ,  capacitance-type quant i ty  sensor ,  and a s ing le  copper-constantan 
thermocouple, The motor-fan is i d e n t i c a l  t o  t h a t  u t i l i z e d  i n  Apollo hydrogen 
tankage, Its purpose is  t o  e l iminate  temperature s t r a t i f i c a t i o n  i n  ehe inner  
vesse l  f l u i d  by perodic s t i r r i n g  of t h e  f l u i d .  
was inoperat ive , a point  t h a t  w i l l  be discussed l a t e r  i n  more d e t a i l .  

This p a r t i c u l a r  motor-fan u n i t  

The calrod hea te r ,  located i n  the  lower port ion of the  inner  vesse l ,  is  
During wrapped lengthwise on the  support tube containing the  motor-fan un i t .  

periods of high supply flow from the  inner  vesse l ,  or f o r  rap id  pressur iza t ion  
of t he  f l u i d  contents from some low pressure s ta te ,  the  171.5 w a t t  hea t e r  
is actuated t o  maintain operat ing pressure.  
capacitance type probe is mounted i n  t h e  upper port ion of t he  inner  vesse l ,  
e l e c t r i c a l l y  insu la ted  from i t s  support  tube,  
l i qu id  l eve l  measurement a t  two-phase , s u b c r i t i c a l  pressure.  
ppessure ( s ing le  phase) a dens i ty  change within the  container  is accompanied 
bV a change i n  the  t o t a l  capacitance of  t he  probe, due t o  t h e  va r i a t ion  of 
t he  d i e l e c t r i c  constant  of t he  s tored  single-phase f l u i d  with i t s  densi ty .  The 
fan and hea te r  operat ion are simultaneously cont ro l led  by a pressure switch ( t o  
be discussed la te r ) ,  which senses inner  vesse l  pressure and energizes the  
fan and hea te r  when pressure degrades below t h e  operat ing pressure of 1000 psig.  

An i n t e r l e a f  p a r a l l e l  p l a t e  l i n e a r  

The element is not designed f o r  
A t  s u p e r c r i t i c a l  

The f i l l  and vent tubes are he l i - a rc  welded t o  the  inner-vessel  f i t t i n g s ,  
and provide t h e  means of t r ans fe r r ing  f l u i d  t o  and from t h e  inner  vesse l .  
f i l l  tube is located a t  the  extreme bottom poin t  of t he  vesse l ,  and t h e  vent tube 

The 
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TABLE V I 1  

SHROUD TANK PHYSICAL CHARACTERISTICS 

D r y  Tank Weight 

Inner  Vessel 
Tank Components 

Material 
Inner  Diameter 
Wall Thickness 
Usable Volume 
Ope r a t i n g  Pres  su re  
Proof Pressure 

Shroud Vessel 
Material 
Inner  Diameter 
Wall 
Usable Volume 
Operating Pressure 
Proof Pressure 

Vapor-Cooled Discrete Shield 
Material 
Inner  Diameter 
Wall 

Material 
Inner  Diarne ter 
Wail 

Material 
Outer Diame-cer 
Wall Thickness 

Marerial 
Outer Diameter 
Wall Thickness 

Material 
Oueer Diameter 
Wall Thickness 
Total  Length 

Outer S h e l l  

Inner  Vessel F i l l  and Vent Tubing 

Shroud Vessel F i l l  and Vent Tubing 

Vapor-Cooling Tubing 

InTernal Components 
Quantity Sensor 

Type 

Output i n  Medium (Submerged) 
A i r  7OoF 
Liquid Oxygen 
Liquid Nitrogen 
Liquid Hydrogen 

Temperature Sensor 
Manufacturer 
Type 

76.6 lb. 

Inconel 718 (annealed) 
17.440 i n .  

0.145 i n .  
1.600 f t 3  

1400 p s i g  
1000 p s i g  

Inconel 718 (annealed) 
18.990 i n .  
0,030 i n n  
0.382 f t 3  

14.7 p s i a  
40 p s i g  

Aluminum 6061-0 
21.090 i n .  
0.020 i n .  

S t a i n l e s s  S t e e l  304L 
22.000 i n .  

0.030 in .  

S t a i n l e s s  S t e e l  304L 
0.3125 i n .  
0.022 i n ,  

S t a i n l e s s  S t e e l  3042 
0.3125 i n .  
0.022 i n .  

Copper (annealed) 
0.250 i n .  
0.030 i n .  

31 f t .  

I n t e r l e a f  P a r a l l e l  P l a t e  
Capacitance 

409 Pfco Farads 
590 Pfco Farads 
580 Pic0 Farads 
493 Pic0 Farads 

American Standard 
Copper-Constantan Thermocouple 
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TABLE VIdCont . 
SHROUD TANK PHYSICAL CHARACTERISTICS 

Motor-Fan 
Manufacturer 
Type 

Input 
Operating Power 

Manufacturer 

Input 
Power 

Heater 

Type I 

44 

Globe 
Cryogenic Des t ra t i f ica t ion-  

200 VAC, 3 Phase, 900 cps 
5 e 0 Watts Maximum 

Hydrogen 

American Standard 
Resistance-Nichrome 
115  VAC, Single  Phase, 60 cps 
171.5 Watts 



is placed a t  t h e  uppermost po in t .  
l i q u i d  cryogen, t h i s  loca t ion  of t he  upper vent tube permits e s s e n t i a l l y  100% 
f i l l .  

If t h e  inner  vesse l  is i n i t i a l l y  charged with 

Capacitance probe electrical  leads e x i t  f r o m  t h e  inner  vesse l  through 
s i lver-brazed j o i n t s  i n  the inner  vent f i t t i n g .  In  t h e  same manner, t h e  four  
motor-fan leads ,  the  thermocouple lead ,  and the  hea ter  lead ,  e x i t  through the  
inner  f i l l  f i t t i n g .  
t h e i r  respec t ive  inner  vesse l  f i t t i n g s ,  and these tubes subsequently pass through 
the  r a d i a l  support  bumpers i n  the  vacuum annulus. 
from the  inner  f i l l  f i t t i n g  pass through one r a d i a l  bumper as a s ing le  u n i t ,  while 
the two capacitance probe leads accompany the  inner  vent tube through two of 
the  th ree  upper r a d i a l  support  bumpers, 

The f i l l  and vent t r a n s f e r  l i n e s  are s i lver-brazed i n t o  

The electrical leads ex i t i ng  

Although the re  is a weldment of  t he  shroud vesse l  t o  t h e  two inner  vesse l  
f i t t i n g s ,  t he  shroud and inner  vesse ls  themselves are completely separa te  and 
form two individual  stopage vessels  i n  one i n t e g r a l  assembly. Thus, t he  shroud 
vesse l  i s  equipped with i t s  own f i l l  and vent f i t t i n g s .  The f i l l  and vent tubes 
are s i lver-brazed i n  these f i t t i n g s  and permit bottom introduct ion of  the  f l u i d  
t o  the  vesse l  and a 100% f i l l  capab i l i t y .  

The shroud f i l l  t r a n s f e r  tube passes through one of the  three  lower 
r a d i a l  support bumpers i n  t h e  vacuum annulus. 
shroud vent f i t t i n g .  
the other  is joined t o  the vapor-cooling l i n e  which is at tached t o  the  s ing le  
d i sc re t e  r ad ia t ion  s h i e l d  i n  t h e  vacuum annulus a 

shroud vent gas through the  normal vent l i n e  or through the  vapor-cooling network 
w i l l  be discussed l a t e r .  

Two t r a n s f e r  tubes e x i t  from t h e  
One passes through a s ing le  upper r a d i a l  bumper, while 

The capab i l i t y  of t r a n s f e r r i n g  

The shroud vessel-inner vesse l  assembly is supported within the  outer  s h e l l  
The low thermal conductivity (vacuum jacke t )  by s i x  Kel-P r a d i a l  support bumpers. 

of t h i s  type of  vesse l  support and the  small contact  area a t  support locat ions 
r e s u l t s  i n  very low conductive hea t  t r a n s f e r  from the  environment t o  the  f l u i d  
contents.  
between the  shroud-inner vesse l  assembly and the  ou te r  s h e l l ,  reduces rad ia t ion  
heat  t r a n s f e r  to the  f l u i d  contents .  
of i n su la t ion  have been discussed e a r l i e r  i n  t h i s  repor t .  The sh ie ld  is i so ther -  
mally-mounted on the  f i l l  and vent t r a n s f e r  tubing and the  e l e c t r i c a l  lead bundle 
at  s i x  loca t ions  by Kel-F spacers .  
tubular  emergence are minimized t o  prevent black-body r ad ia t ion  hea t  t r a n s f e r ,  
The r ad ia t ion  sh ie ld  provides e s s e n t i a l l y  100% coverage of  t he  shroud-inner 
vesse l  un i t .  
sh i e ld ' s  ou te r  surface.  
tubing network with the  s h i e l d ,  which enables e f f i c i e n t  hea t  exchange between 
the shroud f l u i d  and the  sh ie ld .  
the  shroud vessel- inner  vesse l  assembly when vapor-cooling is used r e s u l t s  i n  
f u r t h e r  reduction of  rad ian t  hea t  t r a n s f e r ,  as described previously.  

A s ing le  d i s c r e t e  r ad ia t ion  s h i e l d ,  located i n  t h e  vacuum annulus 

The advantages and e f f e c t s  of t h i s  type 

Cut-outs i n  the  sh i e ld  f o r  bumper and 

Copper tubing is soldered along i t s  e n t i r e  length on the  aluminum 
This provides continuous contact  of t h e  vapor-cooling 

The low temperature environment thus surrounding 

The f i l l  and vent l i n e s ,  as w e l l  as the  electrical leads ,  e x i t  from t h e  
dewar through s i lver-brazed j o i n t s  i n  the  s t a i n l e s s  steel  304L f i t t i n g s .  
These f i t t i n g s  are he l i - a rc  welded i n  t h e  304L outer  s h e l l .  
is evacuated t o  a high vacuum of 
heat  t r a n s f e r  t o  the f l u i d  contents .  

The vacuum annulus 
mmHg or more t o  e l iminate  convective 
Two quan t i t i e s  o f  chabazite g e t t e r  a r e  
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at tached t o  t h e  assembly a t  the  two inner  vesse l  f i t t i n g s ,  and within the  
vacuum annulus. The getter assists i n  maintaining a high,  stable vacuum. 
The outer  sur face  of t h e  shroud vesse l  and t h e  e n t i r e  r ad ia t ion  sh ie ld  
a re  s i lver -p la ted  t o  r e s u l t  i n  low-emissivity surfaces  during system operation. 
The inner  sur face  of  t he  ou te r  s h e l l ,  being e s s e n t i a l l y  a t  environmental 
temperature, is  copper-plated t o  provide a low-emissivity sur face  a t  t h i s  
. re la t ively higher  temperature. The conductive hea t  paths i n  t h e  t r a n s f e r  
tubing and e l ec t r i ca l - l ead  bundle are minimized by t h e  long length of these 
paths .  
higher thermal conductivity o f  s i l v e r  as opposed t o  the  s t a i n l e s s  steel  from 
which the  tubes and lead  sheaths are fabr ica ted .  

In  addi t ion ,  t h e  tubing and leads  are not  s i l v e r  p la ted ,  t o  avoid t h e  

SYSTEM DESCRIPTION 

Physical  c h a r a c t e r i s t i c s  of t h e  Cryogenic Shroud System are presented 
i n  Table V I I I .  

The shroud tank assembly is  supported within a mount car r iage  a t  the  
poin ts  of contac t  between t h e  r a d i a l  bumpers and outer  s h e l l  s o  t h a t  a l l  vesse l  
loads a r e  ca r r i ed  d i r e c t l y  from the  bumpers through t h e  outer  s h e l l  and i n t o  
t h e  mount car r iage  
is  shown i n  Figure 25. 
loca t ions .  

The tank-mount car r iage  assembly (without ex te rna l  plun-bing) 
The system is supported a t  th ree  vibration-damper 

The complete Cryogenic Shroud System shown i n  Figure 23 is represented 
schematically i n  Figure 26. 
f o r  t he  shroud vesse l  and the  inner  pressure vesse l  are mounted on t h e  mount 
car r iage .  Two vent valves f o r  the  shroud vesse l  permit e i t h e r  normal shroud 
venting d i r e c t l y  t o  the  atmosphere o r  vapor-cooling of the  d i s c r e t e  r ad ia t ion  
sh ie ld .  Pressure relief valves a r e  provided f o r  both the  shroud vesse l  and 
the  inner  vesse l  i n  t h e  event excessive pressur iza t ion  of  e i t h e r  cryogen 
occurs e 

Manually operated f i l l  and vent b a l l  valves 

The motor-fan and hea te r  operation are cont ro l led  by a pressure switch,  
located on the  mount car r iage .  
pressure and energizes the fan and hea te r  when pressure degrades below 
the  operat ing pressure of  1000 psig.  
is  cont ro l led  by t h e - c o n t r o l  panel which is a p a r t  of the  system. Manual 
operation of the  fan a t  any t i m e  can be accomplished (as s t a t e d  previously,  
the  motor-fan i n  the  cont rac t  system is cur ren t ly  inoperat ive) .  The hea te r  
operat ion is cont ro l led  only by the pressure switch,  with no manual override.  

This pressure switch senses inner  vesse l  

Power for operation of  t he  fan and hea te r  

An ion pump at tached t o  the evacuation tube of t h e  tank (not shown i n  
Figure 26) serves  two purposes. 
from the  vacuum annulus, and t o  provide a means of determining the pressure 
within the  vacuum annulus. The ion pump operates  from a separate  power 
supply provided with the  system. 

I t  is used t o  remove out-gassed materials 

A s ing le  electrical  connector mounted on the  mount car r iage  provides 
f o r  power input  t o  the  motor-fan and hea ter  through t h e  cont ro l  panel. 
Individual  outputs a r e  provided f o r  monitoring t h e  thermocouple and capacitance 
probe outputs .  
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CRYOGENIC SHROUD SYSTEM PHYSICAL CHARACTERISTICS 

Dry Tank Peight (from Table VII) 76.6 l b .  
External Compments Weight 32.7 l b .  
Total  Dry System Weight 109.3 lb. 

External Components 
Inner Fill and Inner  Vent Valves 

Manufacturer 
Type 
Orifice 
Seats  

Hydromat ics 
Manual B a l l  Valve 
0.375 i n ,  
Kel-F 

Shroud F i l l  and Shroud Vent Valves 
Manufacturer Hoke 
Type 
Orifice 0,375 fn .  
Seats  Teflon 

Manual B a l l  Valve 

Shroud Vapor-Cool Vent Valve 
Manufacturer 
Type 
O r i f  ice 
Seats 

Inner Pressure Relief Valve 
Manufacturer 
Cracking P r e s s u r e  
Maximum Flow 

Shroud Pressure Relief Valve 
Manufacturer 
Cracking Pre s u r e  

Hoke 
Manual Ball Valve 
0.250 i n .  
Kel-F 

James, Pond E Clark 
1050 p s i g  
180 lpm @ 1320 ps ig  

Bendix 
25 p s i g  

Pressure Switch 
Manufacturer In t e rna t iona l  Controls Corp. 
Switch Opening Pressure (on fnc.  press.)1000 psfg 
Switch Closing Pressure (on dec. press  .> 950 ps fg  
Power Rating 5 amp., 115 VAC 

Ion Pump 
Manufacturer 
Capacity 

Mount Carriage 
Materfal 

Inner Vessel and Shroud Vessel 
Fill 

Vibration 

and Vent Tubing 
Material 
Outer Dfameter 
Wall Thickness 

Dampers 
Manufacturer 

Ultek 
0.2 l tr /sec.  

10-5 t o  10-8 torrP. 

Alum. 6061-T6 

Alum. 
0.375 i n .  
0.030 i n .  

Rob fnson 
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SYSTEM OPERATION 

The normal operation of the  Cryogenic Shroud System would involve 
pre-cooling of the  inner  vesse l  by f i l l i n g  t h e  shroud with t h e  desired 
secondary r e f r ige ran t .  
vesse l  as it  is cooled, the  vesse l  should be pressuri,zed ,and sea led  with a 
gas having a lower bo i l ing  point  than t h e  shroud l iqu id .  
should be t h e  same as t h e  primary f l u i d  t o  be used i n  the  inner  vessel .  
shroud l iqu id  source should be pressurized t o  15-30 p s i g  t o  insure  a continuous 
flow of l i q u i d  i n t o  the shroud. 
valve and the shroud vapor-cool vent valve should be open t o  allow rap id  
expulsion of t he  vaporized shroud f l u i d  when it i n i t i a l l y  contacts  the  w a r m  
shroud and inner  vesse l  walls. 
the  shroud l i q u i d  temperature, t he  shroud vesse l  w i l l  f i l l  with l i q u i d .  
Completion of f i l l  is determined when l iqu id  i ssues  from the shroud vent valve. 
Continued t r a n s f e r  t o  the  un i t  w i l l  eventual ly  r e s u l t  i n  l i qu id  i ssu ing  from 
the shroud vapor-cool vent valve. 

To avoid cryopumping of  atmospheric gas i n t o  t h e  inner  

Preferably,  the  gas 
The 

During t h e  f i l l  process ,  both t h e  shroud vent 

When the  container  is s u f f i c i e n t l y  cooled t o  

During the  process of f i l l i n g  t h e  inner  vesse l ,  it is des i rab le  t o  
maintain a low flow of  secondary r e f r ige ran t  i n t o  t h e  shroud. 
s ince  the  primary f l u i d  t r a n s f e r ,  i n  e i t h e r  i t s  l iqu id  or gas phase, r e s u l t s  
i n  heat  input t o  t h e  system and therefore  vaporization of the  shroud l iqu id .  
When t r ans fe r r ing  l i q u i d  i n t o  the  inner  vesse l  (eg . ,  a l i q u i d  ni t rogen-l iquid 
oxygen vented t e s t ) ,  t h e  inner  vesse l  vent valve i s  opened, and the  15-30 
ps ig  pressurized l i qu id  source is t r ans fe r r ed  through the  inner  f i l l  valve. 
For many of t he  combinations 
i n  t h i s  r epor t ,  the  primary f l u i d  w i l l  be t r ans fe r r ed  i n  a gaseous s t a t e  i n t o  
the  inner  vesse l  a t  a pre-selected s torage pressure.  For example, when using 
l i qu id  hydrogen In the  shroud as t h e  secondary r e f r i g e r a n t ,  and helium as the  
primary f l u i d ,  the inner  vesse l  would be closed a t  the  vent valve and gaseous 
helium would be t r ans fe r r ed  a t  1000 ps ig  i n t o  the  vesse l  through the  inner  
f i l l  valve. With a well-regulated source of helium t ransfer red  a t  pressure i n  
such a manner t h a t  the inner  vesse l  r e l i e f  valve does not open, the inner  f i l l  
valve may be l e f t  open u n t i l  flow ceases. 
ta ined  i n  the shroud, and i f  temperature s t r a t i f i c a t i o n  has been avoided within 
the  inner  ves se l ,  the  vesse l  w i l l  now be f i l l e d  with helium a t  l i qu id  hydrogen 
temperature and a t  1000 ps ig .  
t h e  helium t r a n s f e r  l i n e  removed. 

This is  recommended 

of primary and secondary f l u i d s  discussed e a r l i e r  

If l i q u i d  hydrogen has been main- 

The inner  vesse l  f i l l  valve i s  then closed and 

Maximum shroud cool ing effects w i l l  be obtained when the  shroud vent 
valve is closed and t h e  shroud vapor-cool valve is  l e f t  open. 
permit a t r a n s f e r  of t h e  vented shnoud f l u i d  through the  vapor-cooling tubing 
at tached t o  the  r ad ia t ion  sh ie ld .  

This w i l l  

The system con t ro l  panel andpressure switch provide an automatic pressure 
cont ro l  of the  inner  vesse l  f l u i d  contents .  Attachment of the  appropriate 
mating connectors- should be made from t h e  cont ro l  panel t o  t h e  connector on 
the  shroud system (J4), and t o  200 VAC, 3-phase, 400 cps and 115 VAC, s ingle-  
phase, 60 cps power suppl ies  (55 ) .  When the pressure is below 1000 ps ig ,  and 
i n  the process of  being- increased, t h e  pressure switch is 
closed and the  hea te r  and motor fan are energized. A t  1000 ps ig  the  pressure 
switch opens and thepowerc i r cu i t s  t o  t h e  hea te r  and motor fan are l ikewise 
opened. 

automatically 

If pressure then dec l ines ,  t he  pressure switch w i l l  again close and 
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energize the  fan and hea ter .  
operation of the hea te r  t o  r e s u l t  i n  a flow of t h e  f l u i d  t o  and over t h e  heat ing 
c i r c u i t ,  
at  any t i m e  t o  allow f o r  e l iminat ion of f l u i d  temperature s t r a t i f i c a t i o n .  
The hea ter  is energized only when the  pressure switch is closed, %.e. , a t  
pressures below 1000 psig.  
by the  in-s,er pressure r e l i e f  valve. 
is provided f o r  pressure con t ro l  i n  t h e  shroud vessel .  

The motor-fan operation is desired during 

A manual overide switch is provided t o  pemnit motor-fan energizat ion 

Pressure r e l i e f  a t  1050 psfg is accomplished 
A pressure r e l i e f  valve,  s e t  a t  25 ps ig ,  

Single-phase quant i ty  measurement f o r  t he  primary f l u i d  is accomplished 
by determining capacitance output from the  i n t e r l e a f  capacitance probe. The 
capacitance range f o r  100% f u l l  TO empty depends upon the  prfmapy f l u i d  used 
and i ts  remperature and pressure.  Capacitance output f o r  the  s p e c i f i c  probe 
u t i l i z e d  i n  t h i s  cont rac t  un i t  is 409 picofarads i n  a i r  a t  7OoF and 14:7 psra ,  
When submerged i n  l i q u i d  cryogens a t  14.7 p s i a ,  the Capacitance outputs a re  
590 , 580 and 493 picofarads f o r  oxygen, n i t rogen ,  and hydrogen, respec t ive ly .  
Increasing the  f l u i d  dens i ty ,  by increasing the  f l u i d  pressure and/or decreasing 
f l u i d  temperature, r e s u l t s  i n  an increasing capacitance output from the  probe 
Ou-cput is l i n e a r  throughout t he  e n t i r e  range of f u l l  t o  empty due t o  the  
parallel  p l a t e  construct ion 

The temperature of the primary f l u i d  i n  the  center  of  t he  inner  vesse l  
is  de-rermined by voltage measurement of the  copper-constantan thermocouple 
output,  
system mmnt car r iage  ( S 6 )  

An e l e c t r i c a l  connection f o r  potentiometer usage is provided on the  
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I V  PROGRAM DESCRIPTION 

Three of the  bas i c  objec t ives  of t h i s  program were as follows: 

1. 

2. 

3 .  

FABRICATION 

To demonstrate t h a t  t he  integrally-mounted shroud 
design can be fabr ica ted .  

To demanstrate t he  concept of shroud cooling i n  a 
f l igh t - type  cryogenic s torage  system. 

To demonstrate theconcept of using vapor-cooled, d i s c r e t e  
r ad ia t ion  s h i e l d  insu la t ion  f o r  f l igh t - type  cryogenic s torage 
systems 

The primary s torage  vesse l  w a s  fabr ica ted  from Inconel 718 r a t h e r  than 
t i tanium f o r  s eve ra l  reasons.  
t he re  is more knowledge and da ta  ava i lab le  concerning fabr ica t ion  techniques. 
Since it is compatible w i t h  oxygen, oxygen may be used as  the  primary f l u i d  i f  
so desired.  
ranges,  and it can be readi ly  formed by the  hydroform process. 

Not only is the  metal more economical, but  

I t  a l s o  has adequate d u c t i l i t y  over t h e  cryogenic temperature 

To prove tha t  the  hydroformed and mnealed Inconel 718 hemispheres 
were adequate t o  withstand t h e  1000 ps ig  inner  vesse l  operat ing pressure after 
g i r t h  welding, and t o  a l so  prove t h a t  the  completed inner  vesse l  need not 
be age-hardened, a hydros ta t ic  proof pressure t e s t  was performed on a prototype 
inner  vesse l .  
vesse l  measurements indicated t h a t  t h e  annealed condition of  t h e  mater ia l  was 
adequate for the  design operat ing pressure.  

Following pressur iza t ion  t o  the  proof pressure of 1500 psig,  

Inconel '118 was a l s o  used f o r  the shroud vesse l  material f o r  compatible 

The shroud hemispheres were formed by the  
he l i -a rc  welding t o  the  inner  vesse l  f i t t i n g s  ( a l s o  Inconel 7181, t o  insure 
a vacuum and pressure t i g h t  shroud, 
hydroform process 

Aluminum 6061 was se lec ted  as the  s h i e l d  hemisphere mater ia l  because 
of i ts l i g h t  weight and ease of forming by the  hydroform process.  

The outer  s h e l l  was fabr ica ted  from 304L s t a i n l e s s  s teel  because it is 
both economical and adaptable t o  forming, and espec ia l ly  because the  material 
does not o f f e r  a ser ious  weight penalty.  The e n t i r e  system w a s  not designed 
t o  be a fl ight-weight u n i t ,  as evidenced by the  thick-walled,  unaged Inconel 
718 inner  vessel .  It  was not  necessary,  therefore ,  t o  consider aluminum f o r  
t he  ou te r  s h e l l  material, and aluminurn t o  s t a i n l e s s  s t e e l  j o i n t s  were then not 
required f o r  t he  ou te r  f i l l  and vent f i t t i n g s .  
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The inner  vesse l  and shroud vesse l  f i t t i n g s  were fabr ica ted  from 
welding t o  t h e  s h e l l s .  Inconel 718 f o r  compatible A problem area developed 

when the  s t a i n l e s s  steel-sheathed motor fan,  thermocouple, and hea te r  leads 
were s i l v e r  brazed i n t o  t h e  inner  vesse l  f i l l  f i t t i n g ,  p r i o r  t o  welding t h i s  
f i t t i n g  i n  its inner  hemisphere. 
i n  the  f i t t i n g  i n  the  area of t h e  feed4hrough holes ,  
t o  be stress corrosion cracking due t o  the  s i l v e r  brazing process.  A new 
f i t -c ing was fabr ica ted  dimensionally i d e n t i c a l  t o  the  o r i g i n a l  f i t t i n g .  The 
f i t -c ing was then so lu t ion  annealed t o  remove niachining s t r e s s e s ,  and thus 
avoid the  stress corrosion problem. 
electrical leads were s a t i s f a c t o r i l y  brazed i n t o  t h i s  f i t t i n g .  

During t h e  brazing process a crack developed 
The problem was determined 

No problems were encountered when the  

A l l  weld and s i lver -braze  j o i n t s  i n  t h e  tank r e l a t i n g  t o  vacuum i n t e g r i t y  
were extensively helium mass spectrometer leak t e s t e d  t o  prove zero leakage 
at  10-8 atm-cc/sec 

Following s i l v e r  p l a t i n g  of t he  shroud-inner ves se l  assembly and the 
vapor-cooled sh ie ld  and copper p l a t i n g  of t he  inner  sur faces  of the  outer  
s h e l l  hemispheres, t he  tank was assembled within an i n e r t  atmosphere enclosure 
t o  prevent ta rn ish ing  of p la ted  surfaces .  
checked following weldment of t he  ou te r  s h e l l  g i r t h  and ex terna l  f i t t i n g s  
An evacuation-bakeout period was i n i t i a t e d ,  with a bakeout temperature of 
3OOOF maintained throughout t h e  process.  Bakeout was l imi ted  t o  t h i s  temperature 
f o r  two reasons: 
which is super ior  
is  l imi ted  t o  35OOF f o r  s t rength  r e t en t ion ,  and ( 2 )  the  presence of t he  inotor- 
fan un i t  necess i ta tes  avoidance of high bakeout temperatures. 

The system was extensively leak 

(1) t h e  r a d i a l  support bumpers were fabr ica ted  from Kel-F, 
t o  Teflon i n  terms of minimum thermal conduct ivi ty ,  but  

The evacuation-bakeout period required a t o t a l  o f  19 days, with a minimum 
mmHg a t t a ined  immediately p r i o r  t o  the sea l ing  of t he  

I n i t i a l  cool-down of t h e  inner  vesse l  and shroud was performed 
The loss r a t e s  indicated t h a t  t h e  pressure within the  

pressure of 2 .6  x 
evacuation tube.  
with l i qu id  ni t rogen.  
vacuum annulus had increased,  due e i t h e r  t o  an improper cold weld i n  the  
evacuation tube pinch-off or t o  outgassing from some mater ia l  within t h e  vacuum 
aniiulus. The u n i t  was immediately re-evacuated and baked out at  the  same 
temperature f o r  6 days, following which it was pinched of f  and again cooled 
with l i qu id  nitrogen. Heat input  ca lcu la t ions  based upon the  t o t a l  ni t rogen 
weight loss indicated t h a t  t h e  vacuum was s t a b l e ,  with the  loss rate determined 
t o  be 7.9 Btu/hr. 

A problem arose when the  shroud vesse l  was i n i t i a l l y  f i l l e d  with l i q u i d  
It was determined through helium 

The area w a s  repaired by cu t t i ng  

hydrogen, as p a r t i a l  loss of  vacuum resu l ted .  
leak  t e s t i n g  t h a t  the  problem area w a s  near  the  inner  vessel-shroud weld 
attachment a t  t h e  inner  vesse l  f i l l  f i t t i n g .  
o f f  the ou te r  s h e l l  and welding a small crack which had developed i n  the  
shroud s h e l l  near the  inner  vesse l  f i t t i n g .  
t e s t i n g ,  and pressure and temperature cycl ing t o  prove the  repaired area, 
the  shroud vesse l  and sh ie ld  hemispheres were cleaned and s i lve r -p l a t ing  
w a s  accomplished, New ou te r  s h e l l s  were modified, cleaned, and copper-plated. 
The u n i t  was reassembled i n  the  iner t -gas  booth and placed on the  evacuation 
pumps f o r  the  bakeout process.  
required,  with a vacuum o f  7 .5  x 
l i qu id  ni t rogen vented loss rate from t h e  shroud and inner  vesse l  w a s  determined 
t o  be 8 Btu/hr,  which w a s  p r a c t i c a l l y  the  same value obtained p r i o r  t o  the  

Following extensive helium l e a k  

An 18 day evacuation bakeout period w a s  
mm Hg a t t a ined  a t  pinch-off. The t o t a l  
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turn-around assembly process.  
with no problems r e su l t i ng .  

The u n i t  was later f i l l e d  with l i qu id  hdyrogen, 

The t o t a l  turn-around t i m e ,  from discovery of the  problem when the  un i t  

This t i m e  included disassembly, r e p a i r ,  
w a s  f i l l e d  with l i qu id  hyrogen u n t i l  the  reassembled u n i t  was again f i l l e d  
with hydrogen, was only 48 days. 
rep la t ing ,  reassembly, and evacuation bakeout. In  addi t ion ,  r epea tab i l i t y  of 
insu la t ion  qua l i t y  w a s  proven by comparable hea t  leak values.  

Energhat ion  of the  motor-fan un i t  following l i qu id  hydrogen t e s t i n g  
indicated t h a t  t he  motor-fan was inoperat ive.  A de t a i l ed  checkout showed 
t h a t  the  problem w a s  not e l e c t r i c a l ,  i n  t h a t  cur ren t  and voltage re la t ionships  
corresponded t o  those expected f o r  a s t a l l e d  u n i t .  Osci l l iscope readings 
d id  not show a back EMF developed when power t o  the  motor was turned o f f ,  
thus ind ica t ing  t h a t  t h e  fan s h a f t  was not ro t a t ing .  Since t h e  motor-fan 
is within the  inner  vesse l  and therefore  inaccess ib le ,  no r e p a i r  was possible .  
Various methods were employed unsuccessfully t o  free the  locked r o t o r  s h a f t ,  
including temperature shock and cleaning. 
matter became lodged i n  the  motor air-gap, causing the  blockage. 

I t  is assumed t h a t  some foreign 

TESTING 

The t e s t i n g  program performed on the  system a t  Bendix consis ted of (1) 
l i q u i d  ni t rogen venting t e s t s ,  vapor-cooled and non vapor-cooled , ( 2 )  l i qu id  
hydrogen venting tests, vapor-cooled and non vapor-cooled, and (3) pressure 
build-up i n  the  inner  vesse l  with l i qu id  hydrogen i n  both vesse ls .  The test  
program was l imi ted  because of del ivery scheduling, 
was performed by the  Thermochemical T e s t  Branch, Propulsion and Power Division, 
NASA Manned Spacecraft  Center,  Houston, Texas a t  t h e i r  Thermochemical T e s t  
F a c i l i t y  . 

A more extensive program 

The r e s u l t s  of t he  vented tests performed on t h e  system a t  Bendix are 
presented i n  Table I X .  
n i t rogen system vented t e s t  was determined by measuring t h e  flow with a w e t -  
t e s t  meter. The shroud flow r a t e  was then determined from the  t o t a l  system 
weight loss, measured with a recording s c a l e ,  
with l i qu id  only i n  t h e  shroud, t h e  flow r a t e s  were determined from wet-test 
meter measurements. 
system vented tests were obtained from recording sca l e  measurements. 

The loss rate from the  inner  vesse l  f o r  t he  l i q u i d  

For l i qu id  ni t rogen vented t e s t s  

The t o t a l  system flow rates f o r  t he  l i qu id  hydrogen 

The effect of vapor-cooling is shown by the  r e s u l t s  of  the  l i q u i d  
hydrogen system venting tests. With d i r e c t  venting of t h e  shroud f l u i d  t o  
atmosphere, t h e  t o t a l  system heat leak was 4 . 2  Btu/hr. Transfer of shroud 
vent f l u i d  through the  vapor cooled sh ie ld  r e su l t ed  i n  a t o t a l  system heat  
leak of  3.0 Btu/hr, 
cooled t e s t ,  however the  temperature difference was not g rea t  enough t o  be 
so l e ly  responsible  f o r  t he  decrease i n  hea t  leak. 

Ambient temperature w a s  s l i g h t l y  lower during the  vapor- 

A pressure build-up tes t  i n  t h e  inner  vesse l  was performed with the  
shroud f i l l e d  with l i q u i d  hydrogen and vented through the  vapor-cooled sh ie ld .  
The inner  vesse l  was loaded t o  92% f u l l  with l i q u i d  hydrogen and sealed.  
pressure p r o f i l e  for t h i s  tes t  is presented i n  Figure 27. 

The 
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The pressure increase during the  t es t  period was minimal. A t  30 hours 
of t e s t  time, the re  was a decl ine i n  t h e  pressur iza t ion  rate and t h i s  was 
a t t r i b u t e d  t o  low ambient temperature. 
t o  6 .9  ps ig ,  with 44% of the  o r i g i n a l  shroud f l u i d  remaining. 
was r e f i l l e d  with l i qu id  hydrogen, t he re  was a r e su l t i ng  drop i n  pressure t o  
e s s e n t i a l l y  zero ps ig ,  
p r a c t i c a l l y  the  same as during t h e  earlier port ion of  t h e  tes t .  

A t  50 hours,  t h e  pressure had increased 
When the  shroud 

The pressur iza t ion  rate following t h i s  drop w a s  

The venred, vapor-cooled loss rate of hydrogen from the  shroud during 
the  first 50 hours of the  tes t  was determined from the  recording scale measure- 
ments t o  be 3.63 Btu/hr. 
vesse l  pressure rise observed during t h i s  per iod,  t h e  hea t  leak i n t o  The inner  
vessel was determined t o  be 0.64 Btu/hr. 
was therefore  4.27 Btu/hr, The average ambient temperature during t h i s  period 
was 65OF. 

Based upon t h e  i n i t i a l  f i l l  of  92% and the  inner  

The t o t a l  hea t  leak i n t o  the  system 

The extended system standby f o r  a cryogenic-shrouded system was demonstrated 
by the  inner  vesse l  pressure degradation obtained i n  t h i s  t e s t  when the  shroud 
was topped off with l i q u i d  hydrogen. 
system would r e s u l t  i n  an extremely long ground standby per iod,  with a very 
small pressure r i s e  and no loss of primary f l u i d .  

Continued shroud r e f i l l i n g  of such a 
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V CONCLUSIONS AND RECOMMENDATIONS 

CONCLUSIONS 

This program has successfu l ly  demonstrated the  following: 

1. An integrally-mounted cryogenic shroud system can be 
fabr ica ted .  

2. The cryogenic shroud concept is a f eas ib l e  method f o r  long 
durat ion s torage  of  cryogenic f l u i d s .  

3 ,  The vapor-cooled d i sc re t e  r ad ia t ion  sh ie ld  concept r e s u l t s  i n  
s i g n i f i c a n t  weight and thermal insu la t ion  advantages f o r  
cryogenic s torage  systems. 

Examination of two types of l i q u i d  shroud designs -- t he  isothermally- 
mounted shroud and the  integrally-mounted shroud -- r e su l t ed  i n  the  conclusion 
t h a t  the  isothermally-mounted shroud system presents  f ab r i ca t ion  and assembly 
complications which are not  o f f s e t  by weight and thermal advantages, when 
compared with the  integrally-mounted shroud design. 

A study of  various shroud-cooling appl ica t ions  showed the  effects of  
primary f l u i d  operat ing pressure and choice of secondary shroud f l u i d  on both 
pre-launch and in - f l i gh t  standby times. In  p a r t i c u l a r ,  l i qu id  hydrogen cooling 
of helium a t  1500 p s i a  s torage pressure was shown t o  be the  optimum system f o r  
helium storage i n  a shrouded un i t  (of the  s torage  pressures  examined). 
densi ty  helium can be s tored  i n  such a system with minimization of  ground 
support equipment capab i l i t i e s .  

High 

From t e s t s  conducted on the  Cryogenic Shroud System fabr ica ted  i n  
t h i s  program, the f e a s i b i l i t y  of  the  concept was proven. Vapor cooling a 
d i sc re t e  rad ia t ion  s h i e l d  with vented shroud f l u i d  was shown t o  be a highly 
e f f e c t i v e  in su la t ion  technique f o r  the  cont rac t  system and f o r  cryogenic 
s torage systems i n  general .  Extended ground standby capab i l i t y  of  t he  
system was demonstrated by the  readi ly  access ib le  method of r e f i l l i n g  t h e  
shroud vessel .  

RECOMMENDATIONS 

Because of t h e  successfu l  r e s u l t s  obtained from the  Cryogenic Shroud 
System developed and fabr ica ted  i n  t h i s  program, it is recommended t h a t  
t he  concept be applied t o  fu ture  space appl ica t ions .  
cooling of helium by l i q u i d  hydrogen appears t o  be advantageous over present  
systems i n  terms of  extended standby, system weight f o r  long durat ion missions, 
and helium ground support equipment requirements. 
shrouded helium s torage  system should be fabr ica ted  based upon s p e c i f i c  
usable helium requirements and expected in - f l i gh t  standby time f o r  fu ture  
lunar  missions. 
insu la t ion  concept which was a l s o  proven e f f e c t i v e  i n  t h i s  program. 

Spec i f i ca l ly ,  shroud 

A weight-optimized, hydrogen- 

The un i t  should employ t h e  vapor-cooled d i sc re t e  sh i e ld  
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